
HAL Id: hal-01865214
https://normandie-univ.hal.science/hal-01865214

Submitted on 9 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasimetric Graph Edit Distance as a Compact
Quadratic Assignment Problem

David Blumenthal, Évariste Daller, Sébastien Bougleux, Luc Brun, Johann
Gamper

To cite this version:
David Blumenthal, Évariste Daller, Sébastien Bougleux, Luc Brun, Johann Gamper. Quasimetric
Graph Edit Distance as a Compact Quadratic Assignment Problem. 24th International Conference
on Pattern Recognition (ICPR), Aug 2018, Pékin, China. �hal-01865214�

https://normandie-univ.hal.science/hal-01865214
https://hal.archives-ouvertes.fr

Quasimetric Graph Edit Distance as a
Compact Quadratic Assignment Problem

David B. Blumenthal∗, Évariste Daller†, Sébastien Bougleux†, Luc Brun†, and Johann Gamper∗
∗Free University of Bozen-Bolzano, Faculty of Computer Science, 39100 Bozen-Bolzano, Italy

†Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Presented at the 24th IAPR International Conference on Pattern Recognition
ICPR 2018, Beijing, China (http://www.icpr2018.org)

Abstract—The graph edit distance (GED) is a widely used
distance measure for attributed graphs. It has recently been
shown that the problem of computing GED, which is a NP-
hard optimization problem, can be formulated as a quadratic
assignment problem (QAP). This formulation is useful, since it
allows to derive well performing approximative heuristics for
GED from existing techniques for QAP. In this paper, we focus on
the case where the edit costs that underlie GED are quasimetric.
This is the case in many applications of GED. We show that,
for quasimetric edit costs, it is possible to reduce the size of
the corresponding QAP formulation. An empirical evaluation
shows that this reduction significantly speeds up the QAP-based
approximative heuristics for GED.

I. INTRODUCTION

The graph edit distance is a very flexible distance measure
for attributed graphs, which is widely used in the pattern
recognition community. It can be viewed as the minimum
cost that has to be paid for transforming one graph into
another. In the entire paper, we consider (directed or undi-
rected) attributed, simple, loopless graphs G = (V G, EG) and
H = (V H , EH) and assume w. l. o. g. that V G = {1, . . . , n}
and V H = {1, . . . ,m}. An edit path P = (oi)

r
i=1 between

G and H is a sequence of edit operations that transforms G
into H , i. e., satisfies (or ◦ . . . ◦ o1)(G) = H . There are six
edit operations, which are summarized in Table I. Each edit
operation o comes with a positive edit cost c(o).

TABLE I
EDIT OPERATIONS AND EDIT COSTS

edit operation o edit cost c(o)

substitute node i ∈ V G with node k ∈ V H cV (i,k)

remove isolated node i from V G cV (i, ε)

insert isolated node k into V H cV (ε, k)

substitute edge (i, j) ∈ EG with edge (k, l) ∈ EH cE((i, j), (k, l))

remove edge (i, j) from EG cE((i, j), ε)

insert edge (k, l) between i, k ∈ V H into EH cE(ε, (k, l))

Note that the edit costs cV and cE exclusively depend on
the node and edge attributes of G and H: For instance, if
two nodes i, j ∈ V G have the same attribute, then cV (i, k) =
cV (j, k) holds for all k ∈ V H . Therefore, cV and cE can be
viewed as implicit encodings of the attributes of G and H .

Definition 1 (Graph Edit Distance): The graph edit distance
(GED) between two graphs G and H is defined as

GED(G,H) = min
P∈Ψ(G,H)

∑
o∈P

c(o),

where Ψ(G,H) is the set of all edit paths between G and H .
Since the exact computation of GED is NP-hard [1], exact

algorithms can only cope with very small graphs [2]–[6].
For this reason, research has mainly focused on the task
of devising approximative heuristics that compute lower or
upper bounds for GED. Established approximative approaches
compute bounds for GED by using beam search [7], genetic
algorithms [8], Hausdorff matching [9], local search [1], [10],
[11], linear programming [6], [12], or transformations to
variants of the linear sum assignment problem [1], [12]–[21].

Recently, a new paradigm for computing upper bounds for
GED has been proposed [22]–[24]. Its backbone is a reduction
of the problem of computing GED to the following version of
the quadratic assignment problem:

Definition 2 (Quadratic Assignment Problem): Given a
matrix C ∈ R(N ·M)×(N ·M) with N ≤ M , the quadratic
assignment problem (QAP) asks to solve the problem

arg min
X∈ΠN,M

Q(X,C)
def.
= arg min

X∈ΠN,M

vec(X)TC vec(X),

where ΠN,M is the set of maximal partial permutation matrices
between {1, . . . , N} and {1, . . . ,M}, and vec is a matrix-
vectorization operator. The cost Q(X?,C) of an optimal
solution X? for C is denoted by QAP(C).

The new paradigm starts out by constructing a matrix
C ∈ R(n+m)2×(n+m)2 such that QAP(C) = GED(G,H). In a
second step, state-of-the-art QAP-methods are run on C. These
methods then yield upper bounds for GED that are tighter than
all other available upper bounds. However, they are quite slow,
especially in comparison to the approaches based on the linear
sum assignment problem. In order to tackle this problem, it
has been shown that, alternatively, GED can be formulated as
an instance C′ ∈ R(n+1)(m+1)×(n+1)(m+1) of the quadratic
assignment problem with edition (QAPE), a variant of QAP
where the assignment constraints for some nodes are relaxed
[25]. Yet, the drawback of this approach is that some QAP-
methods are not applicable to QAPE and that even those that

http://www.icpr2018.org

are have to be customized manually, which requires a thorough
theoretical understanding on the side of the implementer.

In this paper, we alleviate these shortcomings for settings
where the triangle inequalities

cV (i, k) ≤ cV (i, ε) + cV (ε, k) (1)
cE((i, j), (k, l)) ≤ cE((i, j), ε) + cE(ε, (k, l)) (2)

are satisfied for all (i, k) ∈ V G× V H and all ((i, j), (k, l)) ∈
EG×EH , i. e., for settings where the edge and node edit costs
cV and cE are quasimetric. Note that (2) can be assumed to
hold w. l. o. g.: Since edge substitutions can always be replaced
by a removal and an insertion, we can enforce (2) by set-
ting cE((i, j), (k, l)) = min{cE((i, j), (k, l)), cE((i, j), ε) +
cE(ε, (k, l))}. This is not true of (1), which effectively con-
strains the node edit costs cV . However, (1) is met in many
application scenarios [26], [27].

We show that, if (1) and (2) hold, GED can be reduced
to an instance Ĉ ∈ R(n·m)×(n·m) of QAP. Note that Ĉ is
significantly smaller than the matrix C ∈ R(n+m)2×(n+m)2

employed by the baseline approach [22], [23] and slightly
smaller than the instance C′ ∈ R(n+1)(m+1)×(n+1)(m+1)

used by the QAPE-based reduction [25]. Furthermore, unlike
the QAPE-based reduction, the reduction proposed in this
paper allows the use of off-the-shelf QAP-methods for upper-
bounding GED. An empirical evaluation shows that using Ĉ
instead of C or C′ significantly reduces the runtime of QAP-
based methods for upper-bounding GED, while the tightness
of the obtained upper bound deteriorates only slightly.

The remainder of this paper is organized as follows: In
Section II, the QAP-formulation C of GED proposed in
[22], [23] is summarized briefly and notations that are used
throughout the paper are introduced. In Section III, it is shown
how to construct the smaller formulation Ĉ for quasimetric
edit costs. In Section IV, the results of an empirical evaluation
of the effect of this size-reduction are reported. Section V
concludes the paper.

II. A QAP-FORMULATION OF GED

In this section, we summarize the original QAP-formulation
of the problem of computing GED proposed in [22], [23]. Note
that, for the sake of presentation, we slightly alter the notations
at some points.

The original QAP-formulation works on enlarged graphs
(V G ∪ EG, EG) and (V H ∪ EH , EH). EG = {ε1 = n +
1, . . . , εm = n+m} and EH = {ε1 = m+1, . . . , εn = m+n}
contain m and n isolated dummy nodes, respectively. Let
X = (xi,k) ∈ Π(n+m),(m+n) be a permutation matrix. X
can be written in the following form:

X =

[V H EH

V G Xs Xr

EG Xi X0

]
The north-west quadrant Xs encodes node substitutions, the
south-west quadrant Xi encodes node insertion, the north-
east quadrant Xr encodes node removals, and the south-east

quadrant X0 encodes assignments of dummy nodes to dummy
nodes. Since nodes can be inserted and removed only once,
assignments xi,εj = 1 and xεl,k = 1 with i 6= j and k 6= l are
forbidden. The notation i9k is used to denote that assigning
i ∈ V G+ε to k ∈ V H+ε is forbidden, where V G+ε = V G∪EG
and V H+ε = V H ∪ EH .

Next, the matrices CV ,CE ,C ∈ R(n+m)2×(n+m)2 are
constructed. For the ease of notation, we use two-dimensional
indices (i, k) ∈ V G+ε×V H+ε for referring to their elements,
and a special vectorization operator vec that first concatenates
the columns of V G × V H , then the columns of EG × V H ,
followed by the columns of V G × EH , and the columns of
EG × EH .
CV = (cV(i,k),(j,l)) contains the costs of the node edit

operations. It is defined as

cV(i,k),(j,l) =

{
0 if i 6= j ∨ k 6= l ∨ i9k

c′V (i, k) otherwise,
(3)

where c′V is defined as

c′V (i, k) = δi∈V Gδk∈V H cV (i, k) (4)
+ (1− δi∈V G)δk∈V H cV (ε, k)

+ δi∈V G(1− δk∈V H)cV (i, ε),

and δtrue|false maps true to 1 and false to 0.
CE = (cE(i,k),(j,l)) contains the costs of the edge edit

operations. It is defined as

cE(i,k),(j,l) =

{
ω if i9k ∨ j9l

c′E(i, k, j, l) otherwise,
(5)

where ω = 1 +
∑
i∈V G cV (i, ε) +

∑
k∈V H cV (ε, k) +∑

(i,j)∈EG cE((i, j), ε) +
∑

(k,l)∈EH cE(ε, (k, l)) is a very
large number and c′E is defined as follows:

c′E(i, k, j, l) = δ(i,j)∈EGδ(k,l)∈EH cE((i, j), (k, l)) (6)
+ (1− δ(i,j)∈EG)δ(k,l)∈EH cE(ε, (k, l))

+ δ(i,j)∈EG(1− δ(k,l)∈EH)cE((i, j), ε)

Finally, the QAP-formulation C = (c(i,k),(j,l)) of GED is
defined as C = 1

2CE + CV , if G and H are undirected, and
as C = 1

2 (CE + CT
E) + CV , otherwise. It is shown that the

following holds:
Theorem 1 (Cf. equation (16) in [23]): If, given two

graphs G and H and positive edit costs cV and cE , the
matrix C ∈ R(n+m)2×(n+m)2 is constructed as specified
in the equations (3), (4), (5), and (6), then it holds that
GED(G,H) = QAP(C).

III. REDUCING THE SIZE OF THE QAP-FORMULATION

In this section, we show how to reduce the size of the QAP-
formulation from (n+m)2 × (m+ n)2 to (n ·m)× (n ·m).
We first state the main theorem which presents the reduction
principle. This reduction principle assumes that the graphs are
undirected. In order to avoid redundancies, we do not present
the directed case, which is very similar and can easily be
derived from the undirected one.

Theorem 2 (Reduction Principle): Given two graphs G
and H and quasimetric edit costs cV and cE , let C ∈
R(n+m)2×(n+m)2 be the matrix defined in the equations (3),
(4), (5), and (6). Let Ĉ = (ĉ(i,k),(j,l)) ∈ R(n·m)×(n·m) be
defined as follows:

ĉ(i,k),(j,l) = c(i,k),(j,l) −
3

2

[
δn<mδ(k,l)∈EH cE(ε, (k, l)) (7)

+ δn>mδ(i,j)∈EGcE((i, j), ε)
]

− δi=jδk=l

[
δn<mcV (ε, k) + δn>mcV (i, ε)

]
Then it holds that

QAP(C) = QAP(Ĉ) (8)

+ δn<m

[∑
(k,l)∈EH

cE(ε, (k, l)) +
∑
k∈V H

cV (ε, k)
]

+ δn>m

[∑
(i,j)∈EG

cE((i, j), ε) +
∑
i∈V G

cV (i, ε)
]
,

which, by Theorem 1, implies that Ĉ is a QAP-formulation
of GED.

Note that, by showing the correctness of the reduction
principle, we show that, if the edit costs cV and cE are
quasimetric, the following propositions hold:
• If n ≤ m, then there is an optimal edit path between G

and H that contains no node removals and hence no edge
removals induced by node removals.

• If n ≥ m, then there is an optimal edit path between
G and H that contains no node insertions and hence no
edge insertions induced by node insertions.

In Section III-A, we prove that the reduction principle stated
in Theorem 2 is correct. In Section III-B, we explain how to
turn it into a paradigm for (suboptimally) computing GED.

A. Proving the Correctness of the Reduction Principle

Throughout this section, we assume w. l. o. g. that n ≤ m.
The case n ≥ m is analogous. The first observation, of
which we will make continuous use, is that, by applying the
vectorization operator vec, the original QAP-formultation C
can be rewritten in the following way:

C =



V G×V H EG×V H V G×EH EG×EH

V G×V H Css Csi Csr Cs0

EG×V H Cis Cii Cir Ci0

V G×EH Crs Cri Crr Cr0

EG×EH C0s C0i C0r C00


The first lemma tells us that, w. l. o. g., we can focus on

permutation matrices without forbidden assignments.
Lemma 1: Let X? = (x?i,k) ∈ Π(n+m),(m+n) be optimal for

C. Then x?i,k = 0 for all i9k, i. e., X? does not contain any
forbidden assignments.

Proof: Let X = (xi,k) ∈ {0, 1}(n+m)×(m+n) be defined
as xi,k = δk=εi + δi=εk . It is straightforward to see that we
have X ∈ Π(n+m),(m+n) and that Q(X,C) = ω− 1. Assume

now that there is a forbidden assignment i9k such that x?i,k =
1. Then we have, Q(X?,C) ≥ c(i,k),(i,k)x

?
i,kx

?
i,k = ω.

Next, we observe that some parts of C can be ignored when
computing the quadratic cost of permutation matrices without
forbidden assignments.

Lemma 2: Let X ∈ Π(n+m),(m+n) be a permutation
matrix without forbidden assignments. Then its quadratic cost
Q(X,C) can be rewritten as follows:

Q(X,C) = vec(Xs)TCss vec(Xs)

+ vec(Xs)TCsi vec(Xi) + vec(Xs)TCsr vec(Xr)

+ vec(Xi)TCis vec(Xs) + vec(Xi)TCii vec(Xi)

+ vec(Xr)TCrs vec(Xs) + vec(Xr)TCrr vec(Xr)

Proof: The lemma immediately follows from the con-
struction of C.

We now construct a function f that maps a partial permu-
tation matrix X̂ = (x̂i,k) ∈ Πn,m for Ĉ to a permutation
matrix for C without node removals. For dummy nodes

(εk, εi) ∈ EG × EH , we introduce the notation εk
X̂−→ εi to

denote the condition that k is the ith node in V H to which X̂
assigns a node from V G. The mapping f is defined as follows:

f(X̂)i,k =


x̂i,k if (i, k) ∈ V G × V H

1−
∑
j∈V G x̂j,k if i = εk

1 if (i, k) ∈ EG × EH ∧ i X̂−→ k

0 otherwise

Lemma 3: For each X̂ ∈ Πn,m, it holds that f(X̂) ∈
Πn+m,m+n, that f(X̂)r = 0n×n, and that f(X̂)i,k = 0 for
all i9k.

Proof: For proving the first part of the lemma, note that,
since X̂ ∈ Πn,m and n ≤ m, the first two lines in the definition
of f ensure that f(X̂) covers all rows in V G, all columns in
V H , and leaves exactly n rows in EG uncovered. These rows
as well as all columns in EH are covered by the third line of
the definition of f . The second and the third part of the lemma
immediately follow from the definition of f .

The next lemma shows that restricting to permutation ma-
trices without node removals and restricting to permutation
matrices that are contained in img(f) is equivalent.

Lemma 4: Let X ∈ Π(n+m),(m+n) be a permutation matrix
without forbidden assignments that satisfies Xr = 0n×n.
Then there is a permutation matrix X′ ∈ img(f) such that
Q(X,C) = Q(X′,C).

Proof: Since Xr = 0n×n and X ∈ Π(n+m),(m+n), we
know that Xs ∈ Πn,m. This allows us to define X′ = f(Xs).
Since X and X′ do not contain forbidden assignments, we
know from Lemma 2 that X0 and X′

0 do not contribute to
Q(X,C) and Q(X′,C), respectively. Furthermore, we have
Xs = X′

s and Xr = 0n×n = X′
r by construction. The lemma

thus follows if we can show that Xi = X′
i. So let (i, k) ∈

EG×V H . If i 6= εk, we have i9k and hence x′i,k = xi,k = 0.
Otherwise, it holds that x′i,k = 1−

∑
j∈V G xi,j = xi,k, where

the last equality follows from
∑
j∈V G+ε xj,k = 1 and xj,k = 0

for all j ∈ EG with j 6= εk.

Next, we show that, for quasimetric edit costs, it suffices to
optimize over the permutation matrices contained in img(f).

Lemma 5: If the edit costs cV and cE are quasimetric, then
it holds that QAP(C) = minX∈img(f)Q(X,C).

Proof: Because of Lemma 1, Lemma 3, and Lemma 4,
it suffices to show that, for each permutation matrix X ∈
Π(n+m),(m+n) without forbidden assignments and r > 0 node
removals, i. e., | supp(Xr)| = r, there is a permutation matrix
X′ ∈ Π(n+m),(m+n) without forbidden assignments and r− 1
node removals such that Q(X′,C) ≤ Q(X,C). So assume
that X ∈ Π(n+m),(m+n) contains no forbidden assignments
and the node removal xi,εi = 1 for some node i ∈ V G. Since
X is a permutation matrix without forbidden assignment and
n ≤ m, we then know that X also contains a node insertion
xεk,k = 1 for some node k ∈ V H .

We now define the matrix X′ = (x′j,l) ∈ Π(n+m),(m+n) as

x′j,l =


1 if (j, l) = (i, k) ∨ (j, l) = (εk, εi)

0 if (j, l) = (i, εi) ∨ (j, l) = (εk, k)

xj,l otherwise,

and introduce ∆ = Q(X,C) − Q(X′,C). Since X′ ∈
Π(n+m),(m+n) is immediately implied by X ∈ Π(n+m),(m+n),
the lemma follows if we can show that ∆ ≥ 0.

Let I = {(i, k), (i, εi), (εk, k), (εk, εi)} be the set of
all indices (j, l) ∈ V G+ε × V H+ε with xj,l 6= x′j,l.
It is easy to see that we have c(j,l),(j′,l′)xj,lxj′,l′ =
c(j,l),(j′,l′)x

′
j,lx
′
j′,l′ = 0 for all ((j, l), (j′, l′)) ∈ I × I \

{((i, k), (i, k)), ((i, εi), (i, εi)), ((εk, k), (εk, k))}. For this rea-
son, since C is symmetric, and X does not contain forbidden
assignments, we can write ∆ as

∆ = ∆V +
∑

(j,l)∈(V G+ε×V H+ε)\(I∪F)

∆j,lxj,l,

where F = {(j, l) ∈ V G+ε × V H+ε | j9l} is the set of all
forbidden assignments and

∆V = c(i,εi),(i,εi) + c(εk,k),(εk,k) − c(i,k),(i,k)

∆j,l = 2(c(i,εi),(j,l) + c(εk,k),(j,l) − c(i,k),(j,l) − c(εk,εi),(j,l)).

By definition of C and c′V given in (4), we have ∆V =
cV (i, ε)+cV (ε, k)−cV (i, k) ≥ 0, where the inequality follows
from the fact that cV is quasimetric. Similarly, the definition
of C and c′E given in (5) and the fact that (j, l) /∈ F gives
us ∆j,l = δ(i,j)∈EGδ(k,l)∈EH [cE((i, j), ε) + cE(ε, (k, l)) −
cE((i, j), (k, l))] ≥ 0 for all (j, l) ∈ (V G+ε×V H+ε)\(I∪F),
where the inequality follows from cE being quasimetric.

The next lemma simplifies the quadratic cost Q(X,C) for
permutation matrices X ∈ img(f).

Lemma 6: The quadratic cost Q(X,C) of a permutation
matrix X ∈ img(f) can be written as follows:

Q(X,C)

= vec(Xs)TCss vec(Xs)

+
∑
i∈V G

∑
k∈V H

∑
l∈V H

δ(k,l)∈EH

2
cE(ε, (k, l))xi,kxεl,l (9)

+
∑
k∈V H

∑
j∈V G

∑
l∈V H

δ(k,l)∈EH

2
cE(ε, (k, l))xεk,kxj,l(10)

+
∑
k∈V H

∑
l∈V H

δ(k,l)∈EH

2
cE(ε, (k, l))xεk,kxεl,l (11)

+
∑
k∈V H

cV (ε, k)xεk,k (12)

Proof: By Lemma 3, X does not contain forbidden
assignments, which implies vec(Xs)TCsi vec(Xi) = (9),
vec(Xi)TCis vec(Xs) = (10), and vec(Xi)TCii vec(Xi) =
(11)+(12). Furthermore, we have Xr = 0n×n from Lemma 3.
Therefore, the lemma follows from Lemma 2.

The next step is to relate the cost of a partial permutation
matrix X̂ ∈ Πn,m to the cost of its image under f .

Lemma 7: For each X̂ ∈ Πn,m, it holds that Q(f(X̂),C) =

Q(X̂, Ĉ)+δn<m[
∑

(k,l)∈EH cE(ε, (k, l))+
∑
k∈V H cV (ε, k)].

Proof: Let X = f(X̂) and ck,l =
δ(k,l)∈EH

2 cE(ε, (k, l)).
If n = m, we obtain Xi = 0m×m from Lemma 3 and the
definition of Πn+m,m+n. Since Ĉ = Css, this implies the
statement of the lemma. So we can focus on the case n < m.
By definition of Ĉ, Q(X̂, Ĉ) can be written as follows:

Q(X̂, Ĉ)

=
∑
i∈V G

∑
k∈V H

∑
j∈V G

∑
l∈V H

c(i,k),(j,l)x̂i,kx̂j,l (13)

−
∑
i∈V G

∑
k∈V H

∑
l∈V H

ck,lx̂i,k
∑
j∈V G

x̂j,l (14)

−
∑
k∈V H

∑
j∈V G

∑
l∈V H

ck,lx̂j,l
∑
i∈V G

x̂i,k (15)

−
∑
k∈V H

∑
l∈V H

ck,l
∑
i∈V G

x̂i,k
∑
j∈V G

x̂j,l (16)

−
∑
k∈V H

cV (ε, k)
∑
i∈V G

x̂i,k (17)

Since x̂i,k = xi,k for all (i, k) ∈ V G × V H , it holds that:

(13) = vec(Xs)TCss vec(Xs) (18)

Furthermore, by substituting −
∑
j∈V G x̂j,l with 1 −∑

j∈V G x̂j,l + 1 = xεl,l − 1 in (14) and (16) and substituting
−
∑
i∈V G x̂i,k with 1−

∑
i∈V G x̂i,k + 1 = xεk,k − 1 in (15),

(16), and (17), we obtain the following equalities:

(14) = (9)−
∑
i∈V G

∑
k∈V H

∑
l∈V H

ck,lx̂i,k (19)

(15) = (10)−
∑
k∈V H

∑
j∈V G

∑
l∈V H

ck,lx̂j,l (20)

(16) = (11) +
∑
i∈V G

∑
k∈V H

∑
l∈V H

ck,lx̂i,k (21)

+
∑
k∈V H

∑
j∈V G

∑
l∈V H

ck,lx̂j,l −
∑
k∈V H

∑
l∈V H

ck,l

(17) = (12)−
∑
k∈V H

cV (ε, k) (22)

Since
∑
k∈V H

∑
l∈V H ck,l =

∑
(k,l)∈EH cE(ε, (k, l)), the

lemma follows from summing the equalities (18), (20), (19),
(21), and (22) and applying Lemma 6.

We are now in the position to prove the main theorem.
Proof of Theorem 2: Let X̂? ∈ Πn,m be optimal for Ĉ,

i. e., Q(X̂?, Ĉ) = QAP(Ĉ). Then we know from Lemma 7
that Q(f(X̂?),C) = QAP(Ĉ) +

∑
(k,l)∈EH cE(ε, (k, l)) +∑

k∈V H cV (ε, k), which implies QAP(C) ≤ QAP(Ĉ) +∑
(k,l)∈EH cE(ε, (k, l))+

∑
k∈V H cV (ε, k). On the other hand,

we know from Lemma 5 that there is a permutation matrix
X? ∈ img(f) such that Q(X?,C) = QAP(C). Let X̂ ∈ Πn,m

such that f(X̂) = X?. Then Lemma 7 tells us that QAP(C) =
Q(X̂, Ĉ)+δn<m[

∑
(k,l)∈EH cE(ε, (k, l))+

∑
k∈V H cV (ε, k)].

Since n ≤ m, this proves the theorem.

B. Turning the Reduction Principle into a GED-Paradigm

Given the definition of Ĉ in Theorem 2, it might well
happen that ĉ(i,k),(j,l) < 0 for some (i, j) ∈ V G × V G,
(k, l) ∈ V H × V H . However, some QAP-methods only work
on non-negative cost matrices. In order to render these methods
applicable to Ĉ, Ĉ can be transformed into a non-negative cost
matrix Ĉ+ = (ĉ+(i,k),(j,l)) ∈ R(n·m)×(n·m) defined as

ĉ+(i,k),(j,l) = ĉ(i,k),(j,l) + c, (23)

where c = min{ĉ(i,k),(j,l) | (i, j) ∈ V G × V G ∧ (k, l) ∈
V H × V H}. Clearly a partial permutation matrix X ∈ Πn,m

is optimal for Ĉ just in case it is optimal for Ĉ+, as

Q(Ĉ,X) = Q(Ĉ+,X)−min{n,m}2c (24)

holds for all X ∈ Πn,m.
We are now in the position to state how to use Theorem 2

as a paradigm for (suboptimally) computing GED:
1) Construct compact QAP-instance Ĉ according to equa-

tion (7).
2) Select QAP-method M for (suboptimally) solving Ĉ.
3) If required by M, render Ĉ non-negative by applying

equation (23).
4) Run M on Ĉ to obtain feasible solution and/or (subopti-

mal) assignment cost for Ĉ.
5) If M yields feasible solution, apply the function f to

obtain feasible edit path between G and H .
6) If M yields assignment cost, apply equation (8) (and

equation (24), if Ĉ was positivized in step 3) to obtain
(suboptimal) edit distance for G and H .

IV. EMPIRICAL EVALUATION

A. Compared Methods

To empirically test the proposed compact QAP-formulation
Ĉ, we evaluated how employing Ĉ instead of the baseline
formulation C [22], [23] and the QAPE-based formulation C′

[25] affects the performance of IPFP with multistart (mIPFP)
proposed in [24], which is the best performing currently
available QAP-based method for upper-bounding GED. The
algorithm mIPFP builds upon the algorithm IPFP [22], [23],

[25], which is an adaptation of the Frank-Wolfe algorithm to
the context of GED.

Given a cost matrix C, a set of feasible integral solutions
Π with continuous relaxation Π′, and a (possibly continuous)
initial feasible solution X ∈ Π′, IPFP starts by solving the
following linear minimization problem:

B? = arg min
B∈Π

vec(X)TC vec(B) (25)

If C = C or C = Ĉ, solving (25) amounts to solving
a linear sum assignment problem, whereas, if C = C′,
it amounts to solving a linear sum assignment problem
with error-correction. In the next step, the optimal step-
width α? = arg minα∈[0,1]Q(X + α(B? − X)) is deter-
mined analytically, and X is updated to X + α?(B? −
X) ∈ Π′. The process terminates once |(Q(Xold,C) −
vec(Xold)TC vec(B?))/Q(Xold,C)| < β for a given conver-
gence threshold β ∈ [0, 1] or a maximum number of iterations
I is reached. Upon termination, X is projected to an integral
solution B? ∈ Π by once more solving the linear problem (25),
and Q(B?,C) is returned as an upper bound for GED. The
algorithm mIPFP extends IPFP by starting with k heuristically
computed initial feasible solutions, running IPFP on each
of them (possibly in parallel), and returning the best upper
bound. In the following, we use the expressions B-QAP-mIPFP,
QAPE-mIPFP, and C-QAP-mIPFP to denote mIPFP with C set to
the baseline QAP-formulation C, the QAPE-formulation C′,
and the compact QAP-formulation Ĉ proposed in this paper,
respectively.

B. Experimental Setup and Datasets

For our experiments, we set up mIPFP with I = 100,
β = 10−5, and randomly drew k = 40 initial feasible
integral solutions from Π. Experiments were run on the
chemoinformatics datasets Alkane, Acyclic, MAO, and PAH
used in [22]–[25],1 which naturally induce quasimetric edit
costs (cf. Table 2, Setting 1 in [28]). We recorded the mean
upper bound for GED (d), the mean runtime in seconds (t), and
the mean error w. r. t. the exact GED (e), which we computed
with the standard exact algorithm A* [2]. All methods were
implemented in C++ and experiments were executed on a
Linux Ubuntu machine with 512 GB of main memory and
four AMD Opteron processors with 2.6 GHz and 64 cores,
four of which where used to run mIPFP in parallel.

C. Results of the Experiments

Table IV-C shows the results of our experiments. Note that
the graphs contained in MAO and PAH are too large to allow
for an exact computation of GED, and so, for these datasets,
no mean errors are reported. We see that, on all datasets
expect for MAO, C-QAP-mIPFP is significantly faster than both
B-QAP-mIPFP and QAPE-mIPFP. On MAO, C-QAP-mIPFP is still
faster than B-QAP-mIPFP but slower than QAPE-mIPFP.

In terms of accuracy, on the datasets Alkane, Acyclic,
and PAH, C-QAP-mIPFP performs only marginally worse than

1Available at https://iapr-tc15.greyc.fr/links.html.

https://iapr-tc15.greyc.fr/links.html

TABLE II
EFFECT OF DIFFERENT QAP- AND QAPE-FORMULATIONS ON PERFORMANCE OF mIPFP

algorithm d e t d e t d e t d e t

Alkane Acyclic MAO PAH

B-QAP-mIPFP [22], [23] 15.37 0.023 0.41 16.77 0.035 0.24 33.4 – 2.9 36.7 – 3.14
QAPE-mIPFP [25] 15.34 0.009 0.22 16.73 0.0076 0.13 33.3 – 0.8 36.6 – 1.17
C-QAP-mIPFP [this paper] 15.39 0.062 0.15 16.81 0.079 0.06 39.7 – 1.5 36.7 – 0.89

B-QAP-mIPFP and QAPE-mIPFP. Furthermore, we see from the
results for Alkane and Acyclic that all three algorithms return
an upper bound which is very close to the exact GED. The
only exception is again MAO, where the upper bound returned
by C-QAP-mIPFP is around 20 % looser than the ones returned
by B-QAP-mIPFP and QAPE-mIPFP. The slight accuracy loss
of C-QAP-mIPFP w. r. t. B-QAP-mIPFP and QAPE-mIPFP can be
explained by the fact that, since Ĉ is denser that C and C′,
C-QAP-mIPFP reached the maximum number of iterations I
before reaching the convergence threshold β more often than
the other two algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a compact QAP-formulation Ĉ of GED with
quasimetric edit costs is proposed. Experiments show that
running the state-of-the-art algorithm mIPFP with Ĉ instead
of the baseline formulation C leads to a speed-up by a
factor between 2 and 4, while the accuracy loss is negligible
on most datasets. In comparison to the QAPE-formulation
C′, the speed-up obtained by using Ĉ is smaller. However,
implementing mIPFP with Ĉ is much easier than implementing
it with C′: For implementing mIPFP with Ĉ, one can use an
off-the-shelf solver for the linear sum assignment problem; for
implementing it with C′, one has to implement a solver for
the linear sum assignment problem with error-correction.

In a future work, we will evaluate more extensively how us-
ing the different formulations of GED affects the performance
of QAP-based methods. For instance, we will systematically
vary the parameters I , β, and k and test how B-QAP-mIPFP,
QAPE-mIPFP, and C-QAP-mIPFP behave if different initializa-
tion techniques are employed.

REFERENCES

[1] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” PVLDB, vol. 2, no. 1, pp.
25–36, 2009.

[2] K. Riesen, S. Fankhauser, and H. Bunke, “Speeding up graph edit
distance computation with a bipartite heuristic,” in MLG, 2007, pp. 21–
24.

[3] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An exact
graph edit distance algorithm for solving pattern recognition problems,”
in ICPRAM, 2015, pp. 271–278.

[4] D. B. Blumenthal and J. Gamper, “Exact computation of graph edit
distance for uniform and non-uniform metric edit costs,” in GbRPR,
2017, pp. 211–221.

[5] K. Gouda and M. Hassaan, “CSI GED: An efficient approach for graph
edit similarity computation,” in ICDE, 2016, pp. 265–276.

[6] J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam,
“New binary linear programming formulation to compute the graph edit
distance,” Pattern Recogn., vol. 72, pp. 254–265, 2017.

[7] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms for
the computation of graph edit distance,” in S+SSPR, 2006, pp. 163–172.

[8] K. Riesen, A. Fischer, and H. Bunke, “Improving approximate graph
edit distance using genetic algorithms,” in S+SSPR, 2014, pp. 63–72.

[9] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, “Approx-
imation of graph edit distance based on Hausdorff matching,” Pattern
Recogn., vol. 48, no. 2, pp. 331–343, 2015.

[10] K. Riesen, A. Fischer, and H. Bunke, “Combining bipartite graph
matching and beam search for graph edit distance approximation,” in
ANNPR, 2014, pp. 117–128.

[11] M. Ferrer, F. Serratosa, and K. Riesen, “Learning heuristics to reduce
the overestimation of bipartite graph edit distance approximation,” in
MLDM, 2015, pp. 17–31.

[12] D. Justice and A. Hero, “A binary linear programming formulation of the
graph edit distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 8, pp. 1200–1214, 2006.

[13] S. Bougleux, B. Gaüzère, D. B. Blumenthal, and L. Brun, “Fast linear
sum assignment with error-correction and no cost constraints,” Pattern
Recogn. Lett., 2018, in press.

[14] K. Riesen and H. Bunke, “Approximate graph edit distance computation
by means of bipartite graph matching,” Image Vis. Comput., vol. 27,
no. 7, pp. 950–959, 2009.

[15] D. B. Blumenthal and J. Gamper, “Correcting and speeding-up bounds
for non-uniform graph edit distance,” in ICDE, 2017, pp. 131–134.

[16] ——, “Improved lower bounds for graph edit distance,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 3, pp. 503–516, 2018.

[17] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Efficient Graph
Similarity Search Over Large Graph Databases,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 4, pp. 964–978, 2015.

[18] B. Gauzère, S. Bougleux, K. Riesen, and L. Brun, “Approximate graph
edit distance guided by bipartite matching of bags of walks,” in S+SSPR,
2014, pp. 73–82.

[19] V. Carletti, B. Gaüzère, L. Brun, and M. Vento, “Approximate graph edit
distance computation combining bipartite matching and exact neighbor-
hood substructure distance,” in GbRPR, 2015, pp. 188–197.

[20] F. Serratosa, “Fast computation of bipartite graph matching,” Pattern
Recogn. Lett., vol. 45, pp. 244–250, 2014.

[21] ——, “Speeding up fast bipartite graph matching through a new cost
matrix,” Int. J. Pattern Recogn., vol. 29, no. 2, 2015.

[22] B. Gaüzère, S. Bougleux, and L. Brun, “Approximating graph edit
distance using GNCCP,” in S+SSPR, 2016, pp. 496–506.

[23] S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère, and M. Vento,
“Graph edit distance as a quadratic assignment problem,” Pattern
Recogn. Lett., vol. 87, pp. 38–46, 2017.

[24] É. Daller, S. Bougleux, B. Gaüzère, and L. Brun, “Approximate graph
edit distance by several local searches in parallel,” in ICPRAM, 2018,
pp. 149–158.

[25] S. Bougleux, B. Gaüzère, and L. Brun, “Graph edit distance as a
quadratic program,” in ICPR, 2016, pp. 1701–1706.

[26] E. Ozdemir and C. Gunduz-Demir, “A hybrid classification model for
digital pathology using structural and statistical pattern recognition,”
IEEE Trans. Med. Imaging, vol. 32, no. 2, pp. 474–483, 2013.

[27] M. Stauffer, T. Tschachtli, A. Fischer, and K. Riesen, “A survey on
applications of bipartite graph edit distance,” in GbRPR, 2017, pp. 242–
252.

[28] Z. Abu-Aisheh, B. Gaüzere, S. Bougleux, J.-Y. Ramel, L. Brun,
R. Raveaux, P. Héroux, and S. Adam, “Graph edit distance contest
2016: Results and future challenges,” Pattern Recogn. Lett., vol. 100,
pp. 96–103, 2017.

	Introduction
	A QAP-Formulation of GED
	Reducing the Size of the QAP-Formulation
	Proving the Correctness of the Reduction Principle
	Turning the Reduction Principle into a GED-Paradigm

	Empirical Evaluation
	Compared Methods
	Experimental Setup and Datasets
	Results of the Experiments

	Conclusions and Future Work
	References

