Skip to Main content Skip to Navigation
Conference papers

Quasimetric Graph Edit Distance as a Compact Quadratic Assignment Problem

Abstract : The graph edit distance (GED) is a widely used distance measure for attributed graphs. It has recently been shown that the problem of computing GED, which is a NP-hard optimization problem, can be formulated as a quadratic assignment problem (QAP). This formulation is useful, since it allows to derive well performing approximative heuristics for GED from existing techniques for QAP. In this paper, we focus on the case where the edit costs that underlie GED are quasimetric. This is the case in many applications of GED. We show that, for quasimetric edit costs, it is possible to reduce the size of the corresponding QAP formulation. An empirical evaluation shows that this reduction significantly speeds up the QAP-based approximative heuristics for GED.
Document type :
Conference papers
Complete list of metadata

Cited literature [28 references]  Display  Hide  Download
Contributor : Luc Brun Connect in order to contact the contributor
Submitted on : Sunday, September 9, 2018 - 3:31:36 PM
Last modification on : Saturday, June 25, 2022 - 9:52:30 AM
Long-term archiving on: : Monday, December 10, 2018 - 12:34:50 PM


  • HAL Id : hal-01865214, version 1


David Blumenthal, Évariste Daller, Sébastien Bougleux, Luc Brun, Johann Gamper. Quasimetric Graph Edit Distance as a Compact Quadratic Assignment Problem. 24th International Conference on Pattern Recognition (ICPR), Aug 2018, Pékin, China. ⟨hal-01865214⟩



Record views


Files downloads