CAKE: Compact and Accurate K-dimensional representation of Emotion

Corentin Kervadec 1 Valentin Vielzeuf 1, 2 Stéphane Pateux 1 Alexis Lechervy 2 Frédéric Jurie 2
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Numerous models describing the human emotional states have been built by the psychology community. Alongside, Deep Neural Networks (DNN) are reaching excellent performances and are becoming interesting features extraction tools in many computer vision tasks. Inspired by works from the psychology community, we first study the link between the compact two-dimensional representation of the emotion known as arousal-valence, and discrete emotion classes (e.g. anger, happiness, sadness, etc.) used in the computer vision community. It enables to assess the benefits -- in terms of discrete emotion inference -- of adding an extra dimension to arousal-valence (usually named dominance). Building on these observations, we propose CAKE, a 3-dimensional representation of emotion learned in a multi-domain fashion, achieving accurate emotion recognition on several public datasets. Moreover, we visualize how emotions boundaries are organized inside DNN representations and show that DNNs are implicitly learning arousal-valence-like descriptions of emotions. Finally, we use the CAKE representation to compare the quality of the annotations of different public datasets.
Type de document :
Communication dans un congrès
Image Analysis for Human Facial and Activity Recognition (BMVC Workshop), Sep 2018, Newcastle, United Kingdom. 〈http://juz-dev.myweb.port.ac.uk/BMVCWorkshop/index.html〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01849908
Contributeur : Corentin Kervadec <>
Soumis le : vendredi 27 juillet 2018 - 13:32:46
Dernière modification le : mardi 14 août 2018 - 01:12:48

Fichiers

bmvc_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01849908, version 1
  • ARXIV : 1807.11215

Citation

Corentin Kervadec, Valentin Vielzeuf, Stéphane Pateux, Alexis Lechervy, Frédéric Jurie. CAKE: Compact and Accurate K-dimensional representation of Emotion. Image Analysis for Human Facial and Activity Recognition (BMVC Workshop), Sep 2018, Newcastle, United Kingdom. 〈http://juz-dev.myweb.port.ac.uk/BMVCWorkshop/index.html〉. 〈hal-01849908v1〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

6