S. Aggarwal, What's fueling the biotech engine-2009-2010, Nature Biotechnology, vol.28, pp.1165-1171, 2010.

A. L. Nelson, E. Dhimolea, and J. M. Reichert, Development trends for human monoclonal antibody therapeutics, Nature Reviews Drug Discovery, vol.9, pp.767-774, 2010.

J. R. Birch and A. J. Racher, Antibody production, Advanced Drug Delivery Reviews, vol.58, pp.671-685, 2006.

S. J. Kim, N. S. Kim, C. J. Ryu, H. J. Hong, and G. M. Lee, Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure, Biotechnology and Bioengineering, vol.58, pp.73-84, 1998.

R. Costa, A. , E. Rodrigues, M. Henriques, M. Azeredo et al., Guidelines to cell engineering for monoclonal antibody production, European Journal of Pharmaceutics and Biopharmaceutics, vol.74, pp.127-138, 2010.

F. M. Wurm, Production of recombinant protein therapeutics in cultivated mammalian cells, Nature Biotechnology, vol.22, pp.1393-1398, 2004.

L. M. Barnes, C. M. Bentley, N. Moy, and A. J. Dickson, Molecular analysis of successful cell line selection in transfected GS-NS0 myeloma cells, Biotechnology and Bioengineering, vol.96, pp.337-348, 2007.

S. K. Ng, W. Lin, R. Sachdeva, D. I. Wang, and M. G. Yap, Vector fragmentation: characterizing vector integrity in transfected clones by Southern blotting, Biotechnology Progress, vol.26, pp.11-20, 2010.

Y. K. Lee, J. W. Brewer, R. Hellman, and L. M. Hendershot, BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly, Molecular Biology of the Cell, vol.10, pp.2209-2219, 1999.

J. Chusainow, Y. S. Yang, J. H. Yeo, P. C. Toh, and P. Asvadi, A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?, Biotechnology and Bioengineering, vol.102, pp.1182-1196, 2009.

R. Gonzalez, B. A. Andrews, and J. A. Asenjo, Kinetic model of BiP-and PDImediated protein folding and assembly, Journal of Theoretical Biology, vol.214, pp.529-537, 2002.

S. Ho, M. Bardor, H. Feng, . Mariati, and Y. W. Tong, IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines, Journal of Biotechnology, vol.157, pp.130-139, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01844673

J. Li, C. Zhang, T. Jostock, and S. Dübel, Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site, Protein Engineering, Design and Selection, vol.20, pp.491-496, 2007.

Z. Jiang, Y. Huang, and S. T. Sharfstein, Regulation of recombinant monoclonal antibody production in chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression, Biotechnology Progress, vol.22, pp.313-318, 2006.

S. Schlatter, S. H. Stansfield, D. M. Dinnis, A. J. Racher, and J. R. Birch, On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells, Biotechnology Progress, vol.21, pp.122-133, 2005.

C. J. Lee, G. Seth, J. Tsukuda, and R. W. Hamilton, A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies, Biotechnology and Bioengineering, vol.102, pp.1107-1118, 2009.

N. Lenny and M. Green, Regulation of endoplasmic reticulum stress proteins in COS cells transfected with immunoglobulin m heavy chain cDNA, Journal Of Biological Chemistry, vol.266, pp.20532-20537, 1991.

C. Fagioli, A. Mezghrani, and R. Sitia, Reduction of Interchain Disulfide Bonds Precedes the Dislocation of Ig-m Chains from the Endoplasmic Reticulum to the Cytosol for Proteasomal Degradation, Journal Of Biological Chemistry, vol.276, pp.40962-40967, 2001.

C. Hellen and P. Sarnow, Internal ribosome entry sites in eukaryotic mRNA molecules, Genes & Development, vol.15, pp.1593-1612, 2001.

P. S. Mountford and A. G. Smith, Internal Ribosome Entry Sites And Dicistronic Rnas In Mammalian Transgenesis, Trends In Genetics, vol.11, pp.179-184, 1995.

L. M. Houdebine and J. Attal, Internal ribosome entry sites (IRESs): reality and use, Transgenic Research, vol.8, pp.157-177, 1999.

R. J. Kaufman, M. V. Davies, L. C. Wasley, and D. Michnick, Improved Vectors For Stable Expression Of Foreign Genes In Mammalian-Cells By Use Of The Untranslated Leader Sequence From Emc Virus, Nucleic Acids Research, vol.19, pp.4485-4490, 1991.

M. Hennecke, M. Kwissa, K. Metzger, A. Oumard, and A. Kroger, Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs, Nucleic Acids Research, vol.29, pp.3327-3334, 2001.

T. Jostock, M. Vanhove, E. Brepoels, R. Van-gool, and M. Daukandt, Rapid generation of functional human IgG antibodies derived from Fab-onphage display libraries, Journal of Immunological Methods, vol.289, pp.65-80, 2004.

J. Li, C. Menzel, D. Meier, C. Zhang, and S. Dubel, A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies, Journal of Immunological Methods, vol.318, pp.113-124, 2007.

J. D. Li, C. C. Zhang, T. Jostock, and S. Dubel, Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site, Protein Engineering Design & Selection, vol.20, pp.491-496, 2007.

C. Mielke, M. Tümmler, D. Schübeler, V. Hoegen, I. Hauser et al., Stabilized, long-term expression of heterodimeric proteins from tricistronic mRNA, Gene, vol.254, pp.1-8, 2000.

V. A. Doronina, P. De-felipe, C. Wu, P. Sharma, and M. S. Sachs, Dissection of a co-translational nascent chain separation event, Biochemical Society Transactions, vol.36, pp.712-716, 2008.

V. A. Doronina, C. Wu, P. De-felipe, M. S. Sachs, and M. D. Ryan, Sitespecific release of nascent chains from ribosomes at a sense codon, Molecular and Cellular Biology, vol.28, pp.4227-4239, 2008.

P. De-felipe, G. A. Luke, L. E. Hughes, D. Gani, and C. Halpin, E unum pluribus: multiple proteins from a self-processing polyprotein, Trends in Biotechnology, vol.24, pp.68-75, 2006.

M. L. Donnelly, G. Luke, A. Mehrotra, X. Li, and L. E. Hughes, Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip', Journal of General Virology, vol.82, pp.1013-1025, 2001.

J. Fang, J. J. Qian, S. Yi, T. C. Harding, and G. H. Tu, Stable antibody expression at therapeutic levels using the 2A peptide, Nature Biotechnology, vol.23, pp.584-590, 2005.

J. Fang, S. Yi, A. Simmons, G. H. Tu, and M. Nguyen, An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies In Vivo, Molecular Therapy, vol.15, pp.1153-1159, 2007.

S. L. Davies, P. M. O'callaghan, J. Mcleod, L. P. Pybus, and Y. H. Sung, Impact of gene vector design on the control of recombinant monoclonal antibody production by chinese hamster ovary cells, Biotechnology Progress, vol.27, pp.1689-1699, 2011.

N. Camper, T. Byrne, R. E. Burden, J. Lowry, and B. Gray, Stable expression and purification of a functional processed Fab' fragment from a single nascent polypeptide in CHO cells expressing the mCAT-1 retroviral receptor, Journal of Immunological Methods, vol.372, pp.30-41, 2011.

T. Jostock, Z. Dragic, J. Fang, K. Jooss, and B. Wilms, Combination of the 2A/furin technology with an animal component free cell line development platform process, Applied Microbiology and Biotechnology, vol.87, pp.1517-1524, 2010.

M. Li, Y. M. Wu, Y. H. Qiu, Z. Y. Yao, and S. L. Liu, 2A Peptide-based, Lentivirus-mediated Anti-death Receptor 5 Chimeric Antibody Expression Prevents Tumor Growth in Nude Mice, Molecular Therapy, vol.20, pp.46-53, 2012.

S. K. Ng, D. Wang, and M. Yap, Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44, Metabolic Engineering, vol.9, pp.304-316, 2007.

S. Rees, J. Coote, J. Stables, S. Goodson, and S. Harris, Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibioticresistant cells to express recombinant protein, Biotechniques, vol.20, pp.108-110, 1996.

R. Gonzalez, B. A. Andrews, and J. A. Asenjo, Kinetic model of BiP-and PDImediated protein folding and assembly, J Theor Biol, vol.214, pp.529-537, 2002.

A. Kaminski, M. T. Howell, and R. J. Jackson, Initiation of encephalomyocarditis virus RNA translation: The authentic initiation site is not selected by a scanning mechanism, Embo Journal, vol.9, pp.3753-3759, 1990.

Y. A. Bochkov and A. C. Palmenberg, Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location, Biotechniques, vol.41, pp.283-284, 2006.

M. V. Davies and R. J. Kaufman, The Sequence Context Of The Initiation Codon In The Encephalomyocarditis Virus Leader Modulates Efficiency Of Internal Translation Initiation, Journal Of Virology, vol.66, pp.1924-1932, 1992.

A. Kaminski, G. J. Belsham, and R. J. Jackson, Translation Of Encephalomyocarditis Virus-Rna -Parameters Influencing The Selection Of The Internal Initiation Site, Embo Journal, vol.13, pp.1673-1681, 1994.

P. Martin, O. Albagli, M. C. Poggi, K. E. Boulukos, and P. Pognonec, Development of a new bicistronic retroviral vector with strong IRES activity, BMC Biotechnology, vol.6, p.4, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00089235

J. Qiao, V. Roy, M. H. Girard, and M. Caruso, High translation efficiency is mediated by the encephalomyocarditis virus internal ribosomal entry sites if the natural sequence surrounding the eleventh AUG is retained, Human Gene Therapy, vol.13, pp.881-887, 2002.

P. Walter and G. Blobel, Subcellular distribution of signal recognition particle and 7SL-RNA determined with polypeptide-specific antibodies and complementary DNA probe, The Journal of cell biology, vol.97, pp.1693-1699, 1983.

G. Von-heijne, Signal sequences: The limits of variation, Journal of Molecular Biology, vol.184, pp.99-105, 1985.

S. F. Nothwehr and J. I. Gordon, Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase, Journal of Biological Chemistry, vol.265, pp.17202-17208, 1990.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, pp.105-132, 1982.

P. De-felipe, G. A. Luke, J. D. Brown, and M. D. Ryan, Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences, Biotechnology Journal, vol.5, pp.213-223, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00540527

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nature Methods, vol.8, pp.785-786, 2011.

H. Y. Chan, V. Sivakamasundari, X. Xing, P. Kraus, and S. P. Yap, Comparison of IRES and F2A-based locus-specific multicistronic expression in stable mouse lines, PLoS One, vol.6, 2011.

M. J. Feige, L. M. Hendershot, and J. Buchner, How antibodies fold, Trends in Biochemical Sciences, vol.35, pp.189-198, 2010.

K. Nakayama, Furin: A mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins, Biochemical Journal, vol.327, pp.625-635, 1997.

A. L. Szymczak-workman, K. M. Vignali, and D. Vignali, Design and Construction of 2A Peptide-Linked Multicistronic Vectors, Cold Spring Harbor Protocols, vol.2012, pp.199-204, 2012.