C. Bieniossek, T. Imasaki, Y. Takagi, and I. Berger, MultiBac: expanding the research toolbox for multiprotein complexes, Trends in Biochemical Sciences, vol.37, pp.49-57, 2012.

M. Fussenegger, S. Moser, and J. E. Bailey, Regulated multicistronic expression technology for mammalian metabolic engineering, Cytotechnology, vol.28, pp.111-125, 1998.

A. Kriz, K. Schmid, N. Baumgartner, U. Ziegler, and I. Berger, A plasmidbased multigene expression system for mammalian cells, Nature Communications, vol.1, 2010.

S. Trowitzsch, M. Klumpp, R. Thoma, J. P. Carralot, and I. Berger, Light it up: Highly efficient multigene delivery in mammalian cells, Bioessays, vol.33, pp.946-955, 2011.

K. Leitzgen, M. R. Knittler, and I. G. Haas, Assembly of immunoglobulin light chains as a prerequisite for secretion -A model for oligomerization-dependent subunit folding, Journal Of Biological Chemistry, vol.272, pp.3117-3123, 1997.

N. Lenny and M. Green, Regulation Of Endoplasmic-Reticulum Stress Proteins In Cos Cells Transfected With Immunoglobulin-Mu Heavy-Chain Cdna, Journal Of Biological Chemistry, vol.266, pp.20532-20537, 1991.

S. Schlatter, S. H. Stansfield, D. M. Dinnis, A. J. Racher, and J. R. Birch, On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells, Biotechnology Progress, vol.21, pp.122-133, 2005.

J. Tornoe, P. Kusk, T. E. Johansen, and P. R. Jensen, Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites, Gene, vol.297, pp.21-32, 2002.

K. Yahata, H. Kishine, T. Sone, Y. Sasaki, and J. Hotta, Multi-gene Gateway clone design for expression of multiple heterologous genes in living cells: Conditional gene expression at near physiological levels, Journal Of Biotechnology, vol.118, pp.123-134, 2005.

Y. S. Yang, . Mariati, S. Ho, and M. Yap, Mutated Polyadenylation Signals for Controlling Expression Levels of Multiple Genes in Mammalian Cells, Biotechnology And Bioengineering, vol.102, pp.1152-1160, 2009.

S. Fallot, B. Naya, R. Hieblot, C. Mondon, P. Lacazette et al., Alternative-splicing-based bicistronic vectors for ratio-controlled protein expression and application to recombinant antibody production, Nucleic Acids Research, vol.37, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00419487

J. Chusainow, Y. S. Yang, J. H. Yeo, P. C. Toh, and P. Asvadi, A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer, Biotechnol Bioeng, vol.102, pp.1182-1196, 2009.

S. Ho, M. Bardor, H. T. Feng, . Mariati, and Y. W. Tong, IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines, Journal Of Biotechnology, vol.157, pp.130-139, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01844673

C. J. Lee, G. Seth, J. Tsukuda, and R. W. Hamilton, A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies, Biotechnology And Bioengineering, vol.102, pp.1107-1118, 2009.

S. K. Eszterhas, E. E. Bouhassira, D. Martin, and S. Fiering, Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position, Molecular And Cellular Biology, vol.22, pp.469-479, 2002.

P. De-felipe, G. A. Luke, L. E. Hughes, D. Gani, and C. Halpin, E unum pluribus: multiple proteins from a self-processing polyprotein, Trends in Biotechnology, vol.24, pp.68-75, 2006.

S. Ho, M. Bardor, B. Li, J. J. Lee, and Z. W. Song, Comparison of internal ribosome entry site (IRES) and furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells, Plos One, vol.8, p.63247, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01843946

P. De-felipe, G. A. Luke, J. D. Brown, and M. D. Ryan, Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences, Biotechnology Journal, vol.5, pp.213-223, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00540527

J. H. Kim, S. R. Lee, L. H. Li, H. J. Park, and J. H. Park, High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. Plos One, vol.6, 2011.

H. Y. Chan, V. Sivakamasundari, X. Xing, P. Kraus, and S. P. Yap, Comparison of IRES and F2A-based locus-specific multicistronic expression in stable mouse lines, PLoS One, vol.6, 2011.

E. Martinez-salas, Internal ribosome entry site biology and its use in expression vectors, Curr Opin Biotechnol, vol.10, pp.458-464, 1999.

P. S. Mountford and A. G. Smith, Internal Ribosome Entry Sites And Dicistronic Rnas In Mammalian Transgenesis, Trends In Genetics, vol.11, pp.179-184, 1995.

C. Hellen and P. Sarnow, Internal ribosome entry sites in eukaryotic mRNA molecules, Genes & Development, vol.15, pp.1593-1612, 2001.

Y. Sasaki, T. Sone, K. Yahata, H. Kishine, and J. Hotta, Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: Eukaryotic clones containing two and three ORF multi-gene cassettes expressed from a single promoter, Journal of Biotechnology, vol.136, pp.103-112, 2008.

X. D. Liu, S. N. Constantinescu, Y. Sun, J. S. Bogan, and D. Hirsch, Generation of mammalian cells stably expressing multiple genes at predetermined levels, Analytical Biochemistry, vol.280, pp.20-28, 2000.

Y. A. Bochkov and A. C. Palmenberg, Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location, Biotechniques, vol.41, pp.283-284, 2006.

S. Rees, J. Coote, J. Stables, S. Goodson, and S. Harris, Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibioticresistant cells to express recombinant protein, Biotechniques, vol.20, pp.108-110, 1996.

J. D. Li, C. C. Zhang, T. Jostock, and S. Dubel, Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site, Protein Engineering Design & Selection, vol.20, pp.491-496, 2007.

A. M. Borman, J. L. Bailly, M. Girard, and K. M. Kean, Picornavirus internal ribosome entry segments: Comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro, Nucleic Acids Research, vol.23, pp.3656-3663, 1995.

A. M. Borman, P. Lemercier, M. Girard, and K. M. Kean, Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins, Nucleic Acids Research, vol.25, pp.925-932, 1997.

G. M. Duke, M. A. Hoffman, and A. C. Palmenberg, Sequence and structural elements that contribute to efficient encephalomyocarditis virus-RNA translation, Journal of Virology, vol.66, pp.1602-1609, 1992.

M. V. Davies and R. J. Kaufman, The Sequence Context Of The Initiation Codon In The Encephalomyocarditis Virus Leader Modulates Efficiency Of Internal Translation Initiation, Journal of Virology, vol.66, pp.1924-1932, 1992.

A. Kaminski, G. J. Belsham, and R. J. Jackson, Translation Of Encephalomyocarditis Virus-Rna -Parameters Influencing The Selection Of The Internal Initiation Site, Embo Journal, vol.13, pp.1673-1681, 1994.

M. Kozak, Context Effects And Inefficient Initiation At Non-Aug Codons In Eukaryotic Cell-Free Translation Systems, Molecular And Cellular Biology, vol.9, pp.5073-5080, 1989.

H. Mehdi, E. Ono, and K. C. Gupta, Initiation of translation of at CUG, GUG, and ACG codons in mammalian cells, Gene, vol.91, pp.173-178, 1990.

D. S. Peabody, Translation initiation at non-AUG triplets in mammalian cells, Journal Of Biological Chemistry, vol.264, pp.5031-5035, 1989.

S. Ho, E. Koh, M. Van-beers, M. Mueller, and C. Wan, Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformation stability, Journal Of Biotechnology, vol.165, pp.157-166, 2013.

S. L. De-quinto and E. Martinez-salas, Parameters in influencing translational efficiency in aphthovirus IRES-based bicistronic expression vectors, Gene, vol.217, pp.51-56, 1998.

H. Bouabe, R. Fassler, and J. Heesemann, Improvement of reporter activity by IRES-mediated polycistronic reporter system, Nucleic Acids Research, vol.36, 2008.

M. Hennecke, M. Kwissa, K. Metzger, A. Oumard, and A. Kroger, Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs, Nucleic Acids Res, vol.29, pp.3327-3334, 2001.

A. Kaminski, M. T. Howell, and R. J. Jackson, Initiation of encephalomyocarditis virus-RNA translation-The authentic initiation site is not selected by a scanning mechanism, Embo Journal, vol.9, pp.3753-3759, 1990.

A. Kaminski and R. J. Jackson, The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute, RNA -A Publication of the RNA Society, vol.4, pp.626-638, 1998.

S. L. Davies, P. M. O'callaghan, J. Mcleod, L. P. Pybus, and Y. H. Sung, Impact of gene vector design on the control of recombinant monoclonal antibody production by chinese hamster ovary cells, Biotechnology Progress, vol.27, pp.1689-1699, 2011.

R. Gonzalez, B. A. Andrews, and J. A. Asenjo, Kinetic model of BiP-and PDImediated protein folding and assembly, Journal Of Theoretical Biology, vol.214, pp.529-537, 2002.