G. Walsh, Biopharmaceutical benchmarks 2010, Nature Biotechnology, vol.463, issue.9, pp.917-924, 2010.
DOI : 10.1038/nbt0910-917

S. Aggarwal, What's fueling the biotech engine???2010 to 2011, Nature Biotechnology, vol.71, issue.12, pp.1083-1089, 2011.
DOI : 10.1056/NEJMp1107285

J. Elvin, R. Couston, and C. Van-der-walle, Therapeutic antibodies: Market considerations, disease targets and bioprocessing, International Journal of Pharmaceutics, vol.440, issue.1, pp.83-98, 2013.
DOI : 10.1016/j.ijpharm.2011.12.039

K. Jayapal, K. Wlaschin, W. Hu, and M. Yap, Recombinant protein therapeutics from CHO cells?20 years and counting, Chem Eng Prog, vol.103, p.40, 2007.

A. Beck and J. Reichert, Marketing approval of mogamulizumab, mAbs, vol.4, issue.4, pp.419-425, 2012.
DOI : 10.1182/blood-2012-02-408773

B. Rasala and S. Mayfield, Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses, Photosynthesis Research, vol.4, issue.3, p.24659086, 2014.
DOI : 10.1128/EC.4.7.1264-1272.2005

E. Mathieu-rivet, M. Kiefer-meyer, G. Vanier, C. Ovide, C. Burel et al., Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals, Frontiers in Plant Science, vol.270, 2014.
DOI : 10.1074/jbc.270.29.17344

URL : https://hal.archives-ouvertes.fr/hal-01842175

B. Baïet, C. Burel, B. Saint-jean, R. Louvet, L. Menu-bouaouiche et al., -Acetylglucosaminyltransferase I Enzyme, Journal of Biological Chemistry, vol.1527, issue.8, pp.6152-6164, 2011.
DOI : 10.1074/jbc.M710279200

O. Levy-ontman, S. Arad, D. Harvey, T. Parsons, A. Fairbanks et al., sp., Journal of Biological Chemistry, vol.271, issue.Part 3, pp.21340-21352, 2011.
DOI : 10.1093/glycob/7.5.663

E. Mathieu-rivet, M. Scholz, C. Arias, F. Dardelle, S. Schulze et al., Unravels Novel Complex Structures, Molecular & Cellular Proteomics, vol.2, issue.11, pp.3160-3183, 2013.
DOI : 10.1002/pmic.200900708

URL : https://hal.archives-ouvertes.fr/hal-00996460

O. Levy-ontman, M. Fisher, Y. Shotland, Y. Weinstein, Y. Tekoah et al., Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study, International Journal of Molecular Sciences, vol.24, issue.2, pp.2305-2326, 2014.
DOI : 10.1093/molbev/msm092

N. Lingg, P. Zhang, Z. Song, and M. Bardor, The sweet tooth of biopharmaceuticals: Importance of recombinant protein glycosylation analysis, Biotechnology Journal, vol.849, issue.1, pp.1462-1472, 2012.
DOI : 10.1016/j.jchromb.2006.09.041

URL : https://hal.archives-ouvertes.fr/hal-01844671

S. Rosales-mendoza, L. Paz-maldonado, and R. Soria-guerra, Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives, Plant Cell Reports, vol.12, issue.3, pp.479-494, 2011.
DOI : 10.1007/s10126-010-9258-2

S. Mayfield, S. Franklin, and R. Lerner, Expression and assembly of a fully active antibody in algae, Proceedings of the National Academy of Sciences, vol.278, issue.5345, pp.438-442, 2003.
DOI : 10.1126/science.278.5345.1954

A. Eichler-stahlberg, W. Weisheit, O. Ruecker, and M. Heitzer, Strategies to facilitate transgene expression in Chlamydomonas reinhardtii, Planta, vol.138, issue.4, pp.873-883, 2009.
DOI : 10.1007/s11103-005-2150-1

B. Rasala, M. Muto, P. Lee, M. Jager, R. Cardoso et al., Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii, Plant Biotechnology Journal, vol.82, issue.Pt 1, pp.719-733, 2010.
DOI : 10.1016/S0002-9440(10)63459-1

M. Tran, B. Zhou, P. Pettersson, M. Gonzalez, and S. Mayfield, Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts, Biotechnology and Bioengineering, vol.16, issue.4, pp.663-673, 2009.
DOI : 10.1042/bj2590347

F. Hempel, J. Lau, A. Klingl, and U. Maier, Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum, PLoS ONE, vol.252, issue.12, p.22164289, 2011.
DOI : 10.1371/journal.pone.0028424.g005

F. Hempel and U. Maier, An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency, Microbial Cell Factories, vol.11, issue.1, pp.126-136, 2012.
DOI : 10.1111/j.1467-7652.2007.00273.x

H. Liu, G. Gaza-bulseco, D. Faldu, C. Chumsae, and J. Sun, Heterogeneity of Monoclonal Antibodies, Journal of Pharmaceutical Sciences, vol.97, issue.7, pp.2426-2447, 2008.
DOI : 10.1002/jps.21180

K. Brorson and A. Jia, Therapeutic monoclonal antibodies and consistent ends: terminal heterogeneity, detection, and impact on quality, Current Opinion in Biotechnology, vol.30, pp.140-146, 2014.
DOI : 10.1016/j.copbio.2014.06.012

J. Luo, J. Zhang, D. Ren, W. Tsai, F. Li et al., Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media, Biotechnology and Bioengineering, vol.102, issue.32, pp.2306-2315, 2012.
DOI : 10.1073/pnas.0406547102

L. Tang, S. Sundaram, J. Zhang, P. Carlson, A. Matathia et al., Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry, mAbs, vol.17, issue.1, pp.114-125, 2013.
DOI : 10.1002/prot.340170110

B. Stern, L. Olsen, C. Trö\s-se, H. Ravneberg, and I. Pryme, Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells, Trends Cell Mol Biol, vol.2, pp.1-17, 2007.

M. Voss, B. Schröder, and R. Fluhrer, Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.12, pp.2828-2839, 2013.
DOI : 10.1016/j.bbamem.2013.03.033

C. Bowler, A. Allen, J. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.9, issue.7219, pp.239-244, 2008.
DOI : 10.1038/nature07410

URL : https://hal.archives-ouvertes.fr/cea-00910244

Z. Song, Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics

R. Zimmermann, S. Eyrisch, M. Ahmad, and V. Helms, Protein translocation across the ER membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.3, pp.912-924, 2011.
DOI : 10.1016/j.bbamem.2010.06.015

L. Kober, C. Zehe, and J. Bode, Optimized signal peptides for the development of high expressing CHO cell lines, Biotechnology and Bioengineering, vol.7, issue.3, pp.1164-1173, 2013.
DOI : 10.1002/jgm.677

S. Banerjee, P. Vishwanath, J. Cui, D. Kelleher, R. Gilmore et al., The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation, Proceedings of the National Academy of Sciences, vol.11, issue.4, pp.11676-11681, 2007.
DOI : 10.1093/glycob/11.4.321

D. Rehder, T. Dillon, G. Pipes, and P. Bondarenko, Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics, Journal of Chromatography A, vol.1102, issue.1-2, pp.164-175, 2006.
DOI : 10.1016/j.chroma.2005.10.053

L. Dick, C. Kim, D. Qiu, and K. Cheng, Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides, Biotechnology and Bioengineering, vol.342, issue.3, pp.544-553, 2007.
DOI : 10.1002/bit.21260

A. Kaplan, L. Hood, W. Terry, and H. Metzger, Amino terminal sequences of human immunoglobulin heavy chains, Immunochemistry, vol.8, issue.9, pp.801-811, 1971.
DOI : 10.1016/0019-2791(71)90447-2

J. Vlasak, M. Bussat, S. Wang, E. Wagner-rousset, M. Schaefer et al., Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody, Analytical Biochemistry, vol.392, issue.2, pp.145-154, 2009.
DOI : 10.1016/j.ab.2009.05.043

Y. Song, R. Schowen, R. Borchardt, and E. Topp, Effect of ???pH??? on the rate of asparagine deamidation in polymeric formulations: ???pH??????rate profile, Journal of Pharmaceutical Sciences, vol.90, issue.2, pp.141-156, 2001.
DOI : 10.1002/1520-6017(200102)90:2<141::AID-JPS5>3.0.CO;2-Y

L. Stratton, R. Kelly, R. J. Shively, J. Smith, D. Carpenter et al., Controlling deamidation rates in a model peptide: Effects of temperature, peptide concentration, and additives, Journal of Pharmaceutical Sciences, vol.90, issue.12, pp.2141-2148, 2001.
DOI : 10.1002/jps.1165

B. Domon and C. Costello, A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates, Glycoconjugate Journal, vol.4, issue.4, pp.397-409, 1988.
DOI : 10.1007/BF01049915

A. Varki, R. Cummings, J. Esko, H. Freeze, P. Stanley et al., Symbol nomenclature for glycan representation, PROTEOMICS, vol.137, issue.24, pp.5398-5399, 2009.
DOI : 10.1002/pmic.200900708

A. Tarentino, C. Gomez, and T. Plummer, Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F, Biochemistry, vol.24, issue.17, pp.4665-4671, 1985.
DOI : 10.1021/bi00338a028

V. Tretter, F. Altmann, and L. März, Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha1 3 to the asparagine-linked N-acetylglucosamine residue, European Journal of Biochemistry, vol.26, issue.3, pp.647-652, 1991.
DOI : 10.1016/0003-2697(83)90243-9

L. Mauff, F. Mercier, G. Chan, P. Burel, C. Vaudry et al., Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants, Plant Biotechnology Journal, vol.12, issue.5, p.25523794, 2014.
DOI : 10.1002/pmic.201100474

URL : https://hal.archives-ouvertes.fr/hal-01841099

E. Taga, A. Waheed, and R. Van-etten, Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond, Biochemistry, vol.23, issue.5, pp.815-822, 1984.
DOI : 10.1021/bi00300a006

B. Liu, M. Spearman, J. Doering, E. Lattová, H. Perreault et al., The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody, Journal of Biotechnology, vol.170, pp.17-27, 2014.
DOI : 10.1016/j.jbiotec.2013.11.007

K. Ko, Y. Tekoah, P. Rudd, D. Harvey, R. Dwek et al., Function and glycosylation of plant-derived antiviral monoclonal antibody, Proceedings of the National Academy of Sciences, vol.76, issue.5, pp.8013-8018, 2003.
DOI : 10.1016/0264-410X(92)90510-Q

R. Sriraman, M. Bardor, M. Sack, C. Vaquero, F. L. Fischer et al., Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-??(1,3)-fucose residues, Plant Biotechnology Journal, vol.160, issue.4, pp.279-287, 2004.
DOI : 10.1084/jem.180.3.1087

A. Triguero, G. Cabrera, J. Cremata, C. Yuen, J. Wheeler et al., Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans, Plant Biotechnology Journal, vol.4, issue.4, pp.449-457, 2005.
DOI : 10.1038/4344

S. Petruccelli, M. Otegui, F. Lareu, T. Dinh, O. Fitchette et al., A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds, Plant Biotechnology Journal, vol.133, issue.0, pp.511-527, 2006.
DOI : 10.1073/pnas.0400263101

A. Triguero, G. Cabrera, L. Royle, D. Harvey, P. Rudd et al., Chemical and enzymatic N-glycan release comparison for N-glycan profiling of monoclonal antibodies expressed in plants, Analytical Biochemistry, vol.400, issue.2, pp.173-183, 2010.
DOI : 10.1016/j.ab.2010.01.027

URL : https://hal.archives-ouvertes.fr/hal-01848420

D. Meyer, T. Depicker, and A. , Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana, Frontiers in Plant Science, vol.63, 2014.
DOI : 10.1093/jxb/err366

R. Parekh, R. Dwek, B. Sutton, D. Fernandes, A. Leung et al., Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG, Nature, vol.100, issue.6027, pp.452-457, 1985.
DOI : 10.1042/bst0110132

R. Jefferis, J. Lund, and J. Pound, IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation, Immunological Reviews, vol.80, issue.1, pp.59-76, 1998.
DOI : 10.1016/S0969-2126(01)00136-8

P. Rudd, T. Elliott, P. Cresswell, I. Wilson, and R. Dwek, Glycosylation and the Immune System, Science, vol.291, issue.5512, pp.2370-2376, 2001.
DOI : 10.1126/science.291.5512.2370

T. Raju, J. Briggs, S. Borge, and A. Jones, Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics, Glycobiology, vol.14, issue.3, pp.477-486, 2000.
DOI : 10.1023/A:1018582930906

I. Elbers, G. Stoopen, H. Bakker, L. Stevens, M. Bardor et al., Influence of Growth Conditions and Developmental Stage on N-Glycan Heterogeneity of Transgenic Immunoglobulin G and Endogenous Proteins in Tobacco Leaves, PLANT PHYSIOLOGY, vol.126, issue.3, pp.1314-1322, 2001.
DOI : 10.1104/pp.126.3.1314

T. Holland, M. Sack, T. Rademacher, K. Schmale, F. Altmann et al., Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture, Biotechnology and Bioengineering, vol.101, issue.3, pp.278-289, 2010.
DOI : 10.1016/j.bbagen.2005.11.012

P. Hossler, S. Khattak, and Z. Li, Optimal and consistent protein glycosylation in mammalian cell culture, Glycobiology, vol.1425, issue.3, pp.936-949, 2009.
DOI : 10.1002/(SICI)1097-0290(19991020)65:2<182::AID-BIT8>3.0.CO;2-D

M. Butler, Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems, Cytotechnology, vol.177, issue.9, pp.57-76, 2006.
DOI : 10.1093/oxfordjournals.jbchem.a021631

E. Arcalis, J. Stadlmann, T. Rademacher, S. Marcel, M. Sack et al., Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins, Plant Molecular Biology, vol.160, issue.7, pp.105-117, 2013.
DOI : 10.1104/pp.109.4.1199

H. Aghamohseni, K. Ohadi, M. Spearman, N. Krahn, M. Moo-young et al., Effects of nutrient levels and average culture pH on the glycosylation pattern of camelid-humanized monoclonal antibody, Journal of Biotechnology, vol.186, pp.98-109, 2014.
DOI : 10.1016/j.jbiotec.2014.05.024

M. Ivarsson, T. Villiger, M. Morbidelli, and M. Soos, Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation, Journal of Biotechnology, vol.188, pp.88-96, 2014.
DOI : 10.1016/j.jbiotec.2014.08.026

R. Leatherbarrow and R. Dwek, Binding of complement subcomponent Clq to mouse IgGl, IgG2a AND IgG2b: A novel Clq binding assay, Molecular Immunology, vol.21, issue.4, pp.321-327, 1984.
DOI : 10.1016/0161-5890(84)90103-2

Y. Mimura, P. Sondermann, R. Ghirlando, J. Lund, S. Young et al., Role of Oligosaccharide Residues of IgG1-Fc in Fc??RIIb Binding, Journal of Biological Chemistry, vol.160, issue.49, pp.45539-45547, 2001.
DOI : 10.1038/77296

R. Jefferis, Glycosylation of Recombinant Antibody Therapeutics, Biotechnology Progress, vol.267, issue.1, pp.11-16, 2005.
DOI : 10.4049/jimmunol.164.8.4178

A. Wright and S. Morrison, Effect of C2-Associated Carbohydrate Structure on Ig Effector Function: Studies with Chimeric Mouse-Human IgG1 Antibodies in Glycosylation Mutants of Chinese Hamster Ovary Cells, J Immunol, vol.160, pp.3393-3402, 1998.

A. Goetze, Y. Liu, Z. Zhang, B. Shah, E. Lee et al., High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans, Glycobiology, vol.81, issue.20, pp.949-959, 2011.
DOI : 10.1021/ac901193n

L. Alessandri, D. Ouellette, A. Acquah, M. Rieser, D. Leblond et al., Increased serum clearance of oligomannose species present on a human IgG1 molecule, mAbs, vol.268, issue.4, pp.509-520, 2012.
DOI : 10.4161/mabs.2.3.11788

N. Weinreb, Imiglucerase and its use for the treatment of Gaucher's disease, Expert Opinion on Pharmacotherapy, vol.93, issue.11, 1987.
DOI : 10.1016/j.ymgme.2007.10.126

Y. Shaaltiel, D. Bartfeld, S. Hashmueli, G. Baum, E. Brill-almon et al., Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system, Plant Biotechnology Journal, vol.138, issue.5, pp.579-590, 2007.
DOI : 10.1016/0168-9452(89)90232-X

X. He, J. Galpin, M. Tropak, D. Mahuran, T. Haselhorst et al., Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants, Glycobiology, vol.1, issue.4, pp.492-503, 2012.
DOI : 10.1021/pr025538d