T. A. Norton, M. Melkonian, and R. A. Andersen, Algal biodiversity*, Phycologia, vol.35, issue.4, pp.308-326, 1996.
DOI : 10.2216/i0031-8884-35-4-308.1

P. G. Falkowski, R. T. Barber, and V. Smetacek, Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, vol.281, issue.5374, pp.200-206, 1998.
DOI : 10.1126/science.281.5374.200

URL : http://cmbc.ucsd.edu/content/1/docs/falkowski1998.pdf

C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, vol.281, issue.5374, pp.237-240, 1998.
DOI : 10.1126/science.281.5374.237

URL : https://cloudfront.escholarship.org/dist/prd/content/qt9gm7074q/qt9gm7074q.pdf

J. C. Goldman, Potential role of large oceanic diatoms in new primary production, Deep Sea Research Part I: Oceanographic Research Papers, vol.40, issue.1, pp.159-168, 1993.
DOI : 10.1016/0967-0637(93)90059-C

G. S. Caldwell, The Influence of Bioactive Oxylipins from Marine Diatoms on Invertebrate Reproduction and Development, Marine Drugs, vol.59, issue.3, pp.367-400, 2009.
DOI : 10.1016/j.aquatox.2011.03.018

URL : http://www.mdpi.com/1660-3397/7/3/367/pdf

P. Tréguer, D. M. Nelson, A. J. Van-bennekom, D. J. De-master, and A. Leynaert, The Silica Balance in the World Ocean: A Reestimate, Science, vol.268, issue.5209, pp.375-379, 1995.
DOI : 10.1126/science.268.5209.375

D. M. Nelson, P. Tréguer, M. A. Brzezinski, A. Leynaert, and B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochemical Cycles, vol.33, issue.3, pp.359-372, 1995.
DOI : 10.1016/0198-0149(86)90041-5

D. A. Hutchins and K. W. Bruland, Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime, Nature, vol.105, issue.6685, pp.561-564, 1998.
DOI : 10.1016/S0003-2670(01)83754-5

A. E. Kemp, R. B. Pearce, I. Grigorov, J. Rance, C. B. Lange et al., Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans, Global Biogeochemical Cycles, vol.129, issue.1-2, p.10, 1029.
DOI : 10.1016/S0031-0182(96)00130-7

URL : http://onlinelibrary.wiley.com/doi/10.1029/2006GB002698/pdf

A. E. Allen, J. Laroche, U. Maheswari, M. Lommer, N. Schauer et al., Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation, Proc. Natl. Acad. Sci, pp.10438-10443, 2008.
DOI : 10.1016/j.febslet.2005.01.029

URL : http://www.pnas.org/content/105/30/10438.full.pdf

R. Sutak, H. Botebol, P. Blaiseau, T. Leger, F. Bouget et al., A Comparative Study of Iron Uptake Mechanisms in Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step, PLANT PHYSIOLOGY, vol.160, issue.4, pp.2271-2284
DOI : 10.1104/pp.112.204156

URL : https://hal.archives-ouvertes.fr/hal-00759161

J. A. Raven, Iron acquisition and allocation in stramenopile algae, Journal of Experimental Botany, vol.4, issue.2, pp.2119-2127, 2013.
DOI : 10.1016/j.protis.2011.08.001

Y. Collos, Transient situations in nitrate assimilation by marine diatoms. 4. Non-linear phenomena and the estimation of the maximum uptake rate, Journal of Plankton Research, vol.5, issue.5, pp.677-691, 1983.
DOI : 10.1093/plankt/5.5.677

N. A. Waser, P. J. Harrison, B. Nielsen, S. E. Calvert, and D. H. Turpin, Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom, Limnology and Oceanography, vol.43, issue.2, pp.215-224, 1998.
DOI : 10.4319/lo.1998.43.2.0215

T. A. Villareal, (Nostocaceae) symbiosis, British Phycological Journal, vol.10, issue.4, pp.357-365, 1989.
DOI : 10.4319/lo.1974.19.3.0437

T. Weber and C. Deutsch, Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation, Nature, vol.29, issue.58, pp.419-422
DOI : 10.1029/2001GL014349

R. J. Craggs, P. J. Mcauley, and V. J. Smith, Wastewater nutrient removal by marine microalgae grown on a corrugated raceway, Water Research, vol.31, issue.7, pp.31-1701, 1997.
DOI : 10.1016/S0043-1354(96)00093-0

P. J. Lopez, J. Desclés, A. E. Allen, and C. Bowler, Prospects in diatom research, Current Opinion in Biotechnology, vol.16, issue.2, pp.180-186, 2005.
DOI : 10.1016/j.copbio.2005.02.002

T. Lebeau and J. Robert, Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products, Applied Microbiology and Biotechnology, vol.60, issue.6, pp.624-632, 2003.
DOI : 10.1007/s00253-002-1177-3

O. Herlory, J. Bonzom, R. Gilbin, S. Frelon, S. Fayolle et al., Use of diatom assemblages as biomonitor of the impact of treated uranium mining effluent discharge on a stream: case study of the Ritord watershed (Center-West France), Ecotoxicology, vol.10, issue.2, pp.1186-1199, 2013.
DOI : 10.1016/j.ecolind.2009.06.003

G. S. Braek, A. Jensen, and Å. Mohus, Heavy metal tolerance of marine phytoplankton. III. Combined effects of copper and zinc ions on cultures of four common species, Journal of Experimental Marine Biology and Ecology, vol.25, issue.1, pp.37-50, 1976.
DOI : 10.1016/0022-0981(76)90074-5

E. Morelli and E. Pratesi, Production of Phytochelatins in the Marine Diatom Phaeodactylum tricornutum in Response to Copper and Cadmium Exposure, Bulletin of Environmental Contamination and Toxicology, vol.59, issue.4, pp.657-664, 1997.
DOI : 10.1007/s001289900530

R. Pistocchi, M. A. Mormile, F. Guerrini, G. Isani, and L. Boni, Increased production of extra-and intracellular metal-ligands in phytoplankton exposed to copper and cadmium, Journal of Applied Phycology, vol.12, issue.3/5, pp.469-477, 2000.
DOI : 10.1023/A:1008162812651

J. Parkinson and R. Gordon, Beyond micromachining: the potential of diatoms, Trends in Biotechnology, vol.17, issue.5, pp.190-196, 1999.
DOI : 10.1016/S0167-7799(99)01321-9

R. W. Drum and R. Gordon, Star Trek replicators and diatom nanotechnology, Trends in Biotechnology, vol.21, issue.8, pp.325-328, 2003.
DOI : 10.1016/S0167-7799(03)00169-0

A. Bozarth, U. Maier, and S. Zauner, Diatoms in biotechnology: modern tools and applications, Applied Microbiology and Biotechnology, vol.36, issue.2, pp.195-201, 2009.
DOI : 10.1007/s00253-002-1176-4

A. A. Jamali, F. Akbari, M. M. Ghorakhlu, M. De-la-guardia, and A. Khosroushahi, Applications of diatoms as potential microalgae in nanobiotechnology, pp.83-89, 2012.

A. Muller-feuga, The role of microalgae in aquaculture: Situation and trends, Journal of Applied Phycology, vol.12, issue.3/5, pp.527-534, 2000.
DOI : 10.1023/A:1008106304417

E. W. Becker, Micro-algae as a source of protein, Biotechnology Advances, vol.25, issue.2, pp.207-210, 2007.
DOI : 10.1016/j.biotechadv.2006.11.002

H. Li, Y. Lu, J. Zheng, W. Yang, and J. Liu, Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis, Marine Drugs, vol.6, issue.1, pp.153-166, 2014.
DOI : 10.1016/j.gene.2007.05.022

URL : http://www.mdpi.com/1660-3397/12/1/153/pdf

P. Kroth, Molecular biology and the biotechnological potential of diatoms In Transgenic Microalgae as Green Cell Factories, pp.23-33, 2007.

J. Peng, J. Yuan, C. Wu, and J. Wang, Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms: Metabolism and Bioactivities Relevant to Human Health, Marine Drugs, vol.81, issue.10, pp.1806-1828, 2011.
DOI : 10.1016/j.exer.2005.03.002

URL : http://www.mdpi.com/1660-3397/9/10/1806/pdf

S. Kim, Y. Jung, O. Kwon, K. Cha, B. Um et al., A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum, Applied Biochemistry and Biotechnology, vol.109, issue.7, pp.1843-1855, 2012.
DOI : 10.1002/ejlt.200600216

D. Moreau, C. Tomasoni, C. Jacquot, R. Kaas, R. Le-guedes et al., Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines, Environmental Toxicology and Pharmacology, vol.22, issue.1, pp.97-103, 2006.
DOI : 10.1016/j.etap.2006.01.004

R. Dalmo, B. Martinsen, T. Horsberg, A. Ramstad, C. Syvertsen et al., Prophylactic effect of ??(1,3)-D-glucan (laminaran) against experimental Aeromonas salmonicida and Vibrio salmonicida infections, Journal of Fish Diseases, vol.21, issue.6, pp.459-462, 1998.
DOI : 10.1046/j.1365-2761.1998.00120.x

M. Sakai, Current research status of fish immunostimulants, Aquaculture, vol.172, issue.1-2, pp.63-92, 1999.
DOI : 10.1016/S0044-8486(98)00436-0

B. Morales-lange, J. Bethke, P. Schmitt, and L. Mercado, Phenotypical parameters as a tool to evaluate the immunostimulatory effects of laminarin in Oncorhynchus mykiss, Aquac. Res, 2014.

J. Skjermo, T. R. Størseth, K. Hansen, A. Handå, and G. Øie, Evaluation of ?-(1 ? 3,1 ? 6)-glucans and High-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.) Aquaculture, pp.1088-1101, 2006.

M. Kusaikin, S. Ermakova, N. Shevchenko, V. Isakov, A. Gorshkov et al., Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus, Chemistry of Natural Compounds, vol.78, issue.1, pp.1-4, 2010.
DOI : 10.1042/bj0790531

M. Raposo, R. De-morais, and A. Bernardo-de-morais, Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae, Marine Drugs, vol.34, issue.12, pp.233-252, 2013.
DOI : 10.4319/lo.1998.43.1.0065

URL : http://www.mdpi.com/1660-3397/11/1/233/pdf

H. Abida, S. Ruchaud, L. Rios, A. Humeau, I. Probert et al., Bioprospecting Marine Plankton, Marine Drugs, vol.7, issue.11, pp.4594-4611, 2013.
DOI : 10.1016/j.biortech.2012.07.105

URL : https://hal.archives-ouvertes.fr/hal-01258229

F. Hempel, J. Lau, A. Klingl, and U. G. Maier, Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum, PLoS ONE, vol.252, issue.12, 2011.
DOI : 10.1371/journal.pone.0028424.g005

F. Hempel and U. G. Maier, An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb, Cell Factories, vol.2012, issue.11, pp.10-1186
DOI : 10.1186/1475-2859-11-126

URL : http://doi.org/10.1186/1475-2859-11-126

N. Lingg, P. Zhang, Z. Song, and M. Bardor, The sweet tooth of biopharmaceuticals: Importance of recombinant protein glycosylation analysis, Biotechnology Journal, vol.849, issue.1, pp.1462-1472, 2012.
DOI : 10.1016/j.jchromb.2006.09.041

URL : https://hal.archives-ouvertes.fr/hal-01844671

M. M. Van-beers and M. Bardor, Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins, Biotechnology Journal, vol.10, issue.12, pp.1473-1484, 2012.
DOI : 10.2174/138920109788488914

URL : https://hal.archives-ouvertes.fr/hal-01844668

E. Nguema-ona, M. Vicré-gibouin, M. Gotté, B. Plancot, P. Lerouge et al., Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function, Frontiers in Plant Science, vol.141, issue.93
DOI : 10.1016/j.cell.2010.04.012

URL : http://journal.frontiersin.org/article/10.3389/fpls.2014.00499/pdf

M. Bar-peled and M. A. Neill, Plant Nucleotide Sugar Formation, Interconversion, and Salvage by Sugar Recycling*, Annual Review of Plant Biology, vol.62, issue.1, pp.127-155, 2011.
DOI : 10.1146/annurev-arplant-042110-103918

K. D. Hoagland, J. R. Rosowski, M. R. Gretz, and S. C. Roemer, DIATOM EXTRACELLULAR POLYMERIC SUBSTANCES: FUNCTION, FINE STRUCTURE, CHEMISTRY, AND PHYSIOLOGY, Journal of Phycology, vol.3, issue.13, pp.537-566, 1993.
DOI : 10.1080/08927019109378183

G. J. Underwood and D. M. Paterson, The importance of extracellular carbohydrate production by marine epipelic diatoms, Adv. Bot. Res, vol.40, pp.83-240, 2003.
DOI : 10.1016/s0065-2296(05)40005-1

A. Chiovitti, M. J. Higgins, R. E. Harper, R. Wetherbee, and A. Bacic, THE COMPLEX POLYSACCHARIDES OF THE RAPHID DIATOM PINNULARIA VIRIDIS (BACILLARIOPHYCEAE)1, Journal of Phycology, vol.39, issue.3, pp.543-554, 2003.
DOI : 10.1046/j.1529-8817.2003.02162.x

A. Chiovitti, P. Molino, S. A. Crawford, R. Teng, T. Spurck et al., The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides, European Journal of Phycology, vol.11, issue.2, pp.117-128, 2004.
DOI : 10.1104/pp.116.4.1431

URL : http://www.tandfonline.com/doi/pdf/10.1080/0967026042000201885?needAccess=true

A. Chiovitti, R. E. Harper, A. Willis, A. Bacic, P. Mulvaney et al., VARIATIONS IN THE SUBSTITUTED 3-LINKED MANNANS CLOSELY ASSOCIATED WITH THE SILICIFIED WALLS OF DIATOMS1, Journal of Phycology, vol.14, issue.6, pp.1154-1161, 2005.
DOI : 10.1104/pp.113.4.1059

B. Tesson and M. Hildebrand, Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation, PLoS ONE, vol.10, issue.4, 2013.
DOI : 10.1371/journal.pone.0061675.s006

URL : https://doi.org/10.1371/journal.pone.0061675

T. Nakajima and B. Volcani, 3,4-Dihydroxyproline: A New Amino Acid in Diatom Cell Walls, Science, vol.164, issue.3886, pp.1400-1401, 1969.
DOI : 10.1126/science.164.3886.1400

R. E. Hecky, K. Mopper, P. Kilham, and E. Degens, The amino acid and sugar composition of diatom cell-walls, Marine Biology, vol.2, issue.4, pp.323-331, 1973.
DOI : 10.1007/BF00348902

D. M. Swift and A. Wheeler, EVIDENCE OF AN ORGANIC MATRIX FROM DIATOM BIOSILICA1, Journal of Phycology, vol.28, issue.2, pp.202-209, 1992.
DOI : 10.1111/j.0022-3646.1992.00202.x

N. Kröger, Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science, vol.286, pp.1129-1132, 1999.

B. E. Volcani, Cell wall formation in diatoms: Morphogenesis and biochemistry. In Silicon and Siliceous Structures in Biological Systems, pp.157-200, 1981.
DOI : 10.1007/978-1-4612-5944-2_7

N. Kröger and N. Poulsen, Diatoms???From Cell Wall Biogenesis to Nanotechnology, Annual Review of Genetics, vol.42, issue.1, pp.83-107, 2008.
DOI : 10.1146/annurev.genet.41.110306.130109

M. Kates and B. Volcani, Studies on the biochemistry and fine structure of silica shell formation in diatoms. Lipid components of the cell walls, Z. Pflanzenphysiol, vol.60, pp.19-29, 1968.

B. Tesson, M. J. Genet, V. Fernandez, S. Degand, P. G. Rouxhet et al., Surface Chemical Composition of Diatoms, ChemBioChem, vol.13, issue.12, pp.2011-2024, 2009.
DOI : 10.1002/jbm.b.30866

URL : https://hal.archives-ouvertes.fr/hal-00432846

A. Haug and S. Myklestad, Polysaccharides of marine diatoms with special reference to Chaetoceros species, Marine Biology, vol.29, issue.3, pp.217-222, 1976.
DOI : 10.1007/BF00388798

G. L. Cowie and J. Hedges, Digestion and alteration of the biochemical constituents of a diatom (Thalassiosira weisflogii) ingested by an herbivorous zooplankton (Calanus pacificus), Limnology and Oceanography, vol.41, issue.4
DOI : 10.4319/lo.1996.41.4.0581

, Limnol. Oceanogr, vol.41, pp.581-594, 1996.

J. Coombs and B. Volcani, Studies on the biochemistry and fine structure of silica shell formation in diatoms, Planta, vol.77, issue.3, pp.264-279, 1968.
DOI : 10.1007/BF00392396

C. W. Ford and E. Percival, Carbohydrates of Phaeodactylum tricornutum. Part II. A sulphated glucuronomannan, J. Chem. Soc, pp.7042-7046, 1965.

A. S. Abdullahi, G. J. Underwood, and M. R. Gretz, EXTRACELLULAR MATRIX ASSEMBLY IN DIATOMS (BACILLARIOPHYCEAE). V. ENVIRONMENTAL EFFECTS ON POLYSACCHARIDE SYNTHESIS IN THE MODEL DIATOM, PHAEODACTYLUM TRICORNUTUM1, Journal of Phycology, vol.43, issue.2, pp.363-378, 2006.
DOI : 10.4319/lo.1998.43.8.1860

A. Willis, A. Chiovitti, T. M. Dugdale, and R. Wetherbee, Characterization of the extracellular matrix of Phaeodactylum tricornutum (Bacillariophyceae): Structure, composition, and adhesive characteristics, J. Phycol, vol.49, pp.937-949, 2013.

M. J. Mcconville, R. Wetherbee, and A. Bacic, Subcellular location and composition of the wall and secreted extracellular sulphated polysaccharides/proteoglycans of the diatomStauroneis amphioxys Gregory, Protoplasma, vol.113, issue.1-3, pp.188-200, 1999.
DOI : 10.1007/BF01279266

G. G. Allan, J. Lewin, and P. G. Johnson, Marine Polymers. IV Diatom Polysaccharides, Botanica Marina, vol.3, issue.2, pp.102-108, 1972.
DOI : 10.1515/botm.1972.15.2.102

N. Dweltz, J. R. Colvin, and A. Mcinnes, Studies on chitan, pp.1-4

, D-glucan) fibers of the diatom Thalassiosira fluviatilis, Hustedt. III. The structure of chitan from X-ray diffraction and electron microscope observations, Can. J. Chem, vol.46, pp.1513-1521, 1968.

J. Blackwell, K. D. Parker, and K. M. Rudall, Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica, Journal of Molecular Biology, vol.28, issue.2, pp.383-385, 1967.
DOI : 10.1016/S0022-2836(67)80018-4

G. J. Lindsay and G. W. Gooday, Action of chitinase on spines of the diatom Thalassiosira fluviatilis, Carbohydrate Polymers, vol.5, issue.2, pp.131-140, 1985.
DOI : 10.1016/0144-8617(85)90030-X

Y. Nishiyama, Y. Noishiki, and M. Wada, X-ray Structure of Anhydrous ??-Chitin at 1 ?? Resolution, Macromolecules, vol.44, issue.4, pp.950-957, 2011.
DOI : 10.1021/ma102240r

URL : https://hal.archives-ouvertes.fr/hal-00577115

D. Sawada, Y. Nishiyama, P. Langan, V. T. Forsyth, S. Kimura et al., Water in Crystalline Fibers of Dihydrate ??-Chitin Results in Unexpected Absence of Intramolecular Hydrogen Bonding, PLoS ONE, vol.10, issue.1023/B, 2012.
DOI : 10.1371/journal.pone.0039376.s004

URL : https://hal.archives-ouvertes.fr/hal-00720297

J. Blackwell, K. D. Parker, and K. M. Rudall, Chitin in pogonophore tubes, Journal of the Marine Biological Association of the United Kingdom, vol.45, issue.03, pp.659-661, 1965.
DOI : 10.1016/S0065-2806(08)60177-0

F. Gaill, J. Persson, J. Sugiyama, R. Vuong, and H. Chanzy, The chitin system in the tubes of deep sea hydrothermal vent worms, Journal of Structural Biology, vol.109, issue.2, pp.116-128, 1992.
DOI : 10.1016/1047-8477(92)90043-A

URL : https://hal.archives-ouvertes.fr/hal-00310341

Y. Ogawa, S. Kimura, and M. Wada, Electron diffraction and high-resolution imaging on highly-crystalline ??-chitin microfibril, Journal of Structural Biology, vol.176, issue.1, pp.83-90, 2011.
DOI : 10.1016/j.jsb.2011.07.001

W. Herth, A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella, Naturwissenschaften, vol.75, issue.5, pp.260-261, 1978.
DOI : 10.1007/BF00368573

W. Herth, The site of ??-chitin fibril formation in centric diatoms. II. The chitin-forming cytoplasmic structures, Journal of Ultrastructure Research, vol.68, issue.1, pp.16-27, 1979.
DOI : 10.1016/S0022-5320(79)90138-2

W. Herth and W. Barthlott, The site of ??-chitin fibril formation in centric diatoms. I. Pores and fibril formation, Journal of Ultrastructure Research, vol.68, issue.1, pp.6-15, 1979.
DOI : 10.1016/S0022-5320(79)90137-0

B. Shillito, A. J. Koster, J. Walz, and W. Baumeister, Electron tomographic reconstruction of plastic-embedded organelles involved in the chitin secretion process, Biology of the Cell, vol.88, issue.1-2, pp.5-13, 1996.
DOI : 10.1016/S0248-4900(97)86825-6

J. Ravaux, B. Shillito, F. Gaill, L. Gay, M. Voss-foucart et al., Tube synthesis and growth processes in the hydrothermal vent tube-worm Riftia pachyptila, Cah. Biol, vol.39, pp.325-326, 1998.

J. Sugiyama, C. Boisset, M. Hashimoto, and T. Watanabe, Molecular directionality of ??-chitin biosynthesis, Journal of Molecular Biology, vol.286, issue.1, pp.247-255, 1999.
DOI : 10.1006/jmbi.1998.2458

T. Imai, T. Watanabe, T. Yui, and J. Sugiyama, The directionality of chitin biosynthesis: a revisit, Biochemical Journal, vol.374, issue.3, pp.755-760, 2003.
DOI : 10.1042/bj20030145

C. A. Durkin, T. Mock, and E. Armbrust, Chitin in Diatoms and Its Association with the Cell Wall, Eukaryotic Cell, vol.8, issue.7, pp.1038-1050, 2009.
DOI : 10.1128/EC.00079-09

URL : http://ec.asm.org/content/8/7/1038.full.pdf

B. Tesson, S. Masse, G. Laurent, J. Maquet, J. Livage et al., Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall, Analytical and Bioanalytical Chemistry, vol.21, issue.7, pp.1889-1898, 2008.
DOI : 10.1016/0079-6565(95)01017-3

URL : https://hal.archives-ouvertes.fr/hal-00347613

L. G. Morin, R. A. Smucker, and W. Herth, FEMS Microbiology Letters, vol.8, issue.3, pp.263-268, 1986.
DOI : 10.1007/978-1-4615-8714-9_3

M. Quillet and R. Combes, Sur la nature chimique de la leucosine, polysaccharide de réserve caractéristique des Chrysophycées, extraite d'Hydrudus foetidus, C. R. Hebd. Séances Acad. Sci, vol.240, pp.1001-1003, 1955.

L. Waterkeyn and A. Bienfait, Localization and function of ?(1,3)-glucans (callose and chrysolaminarin) in Pinnularia genus (Diatoms), Cellule (Belg, vol.74, pp.199-226, 1987.

S. Myklestad, Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture, Journal of Experimental Marine Biology and Ecology, vol.15, issue.3, pp.261-274, 1974.
DOI : 10.1016/0022-0981(74)90049-5

A. Beattie, E. L. Hirst, and E. Percival, Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae, Biochemical Journal, vol.79, issue.3, pp.531-536, 1961.
DOI : 10.1042/bj0790531

C. W. Ford and E. Percival, The carbohydrates of Phaeodactylum tricornutum. Part I. Preliminary examination of the organism, and characterisation of low molecular weight material and of a glucan, J. Chem. Soc, pp.7035-7041, 1965.

S. A. Alekseeva, N. M. Shevchenko, M. I. Kusaykin, L. P. Ponomorenko, V. V. Isakov et al., Polysaccharides of diatoms occurring in Lake Baikal, Applied Biochemistry and Microbiology, vol.20, issue.12, pp.185-191, 2005.
DOI : 10.1007/s10438-005-0033-5

T. R. Størseth, K. Hansen, K. I. Reitan, and J. Skjermo, Structural characterization of ??-d-(1???3)-glucans from different growth phases of the marine diatoms Chaetoceros m??lleri and Thalassiosira weissflogii, Carbohydrate Research, vol.340, issue.6, pp.1159-1164, 2005.
DOI : 10.1016/j.carres.2004.12.036

Y. Kim, E. Kim, C. Cheong, D. L. Williams, C. Kim et al., Structural characterization of ??-d-(1???3, 1???6)-linked glucans using NMR spectroscopy, Carbohydrate Research, vol.328, issue.3, pp.331-341, 2000.
DOI : 10.1016/S0008-6215(00)00105-1

B. S. Paulsen and S. Myklestad, Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum (grev.) Cleve, Carbohydrate Research, vol.62, issue.2, pp.386-388, 1978.
DOI : 10.1016/S0008-6215(00)80888-5

M. J. Mcconville, A. Bacic, and A. Clarke, Structural studies of chrysolaminaran from the ice diatom Stauroneis amphioxys (Gregory), Carbohydrate Research, vol.153, issue.2, pp.330-333, 1986.
DOI : 10.1016/S0008-6215(00)90276-3

B. A. Wustman, M. R. Gretz, and K. D. Hoagland, Extracellular Matrix Assembly in Diatoms (Bacillariophyceae) (I. A Model of Adhesives Based on Chemical Characterization and Localization of Polysaccharides from the Marine Diatom Achnanthes longipes and Other Diatoms), Plant Physiology, vol.113, issue.4, pp.1059-1069, 1997.
DOI : 10.1104/pp.113.4.1059

URL : http://www.plantphysiol.org/content/plantphysiol/116/4/1431.full.pdf

A. Chiovitti, A. Bacic, J. Burke, and R. Wetherbee, (Bacillariophyceae), European Journal of Phycology, vol.38, issue.4, pp.351-360, 2003.
DOI : 10.1016/S0167-7306(08)60585-2

T. R. Størseth, S. Kirkvold, J. Skjermo, and K. I. Reitan, A branched ??-d-(1???3,1???6)-glucan from the marine diatom Chaetoceros debilis (Bacillariophyceae) characterized by NMR, Carbohydrate Research, vol.341, issue.12, pp.2108-2114, 2006.
DOI : 10.1016/j.carres.2006.05.005

J. Y. Lee, Y. Kim, H. J. Kim, Y. Kim, and W. Park, , pp.5404-5411

D. Brouwer, J. Wolfstein, K. Stal, and L. J. , Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom, European Journal of Phycology, vol.37, issue.1, pp.37-44, 2002.
DOI : 10.1017/S0967026201003419

G. J. Underwood, M. Boulcott, C. A. Raines, and K. Waldron, ENVIRONMENTAL EFFECTS ON EXOPOLYMER PRODUCTION BY MARINE BENTHIC DIATOMS: DYNAMICS, CHANGES IN COMPOSITION, AND PATHWAYS OF PRODUCTION1, Journal of Phycology, vol.43, issue.2, pp.293-304, 2004.
DOI : 10.4319/lo.1998.43.8.1860

B. Bellinger, A. Abdullahi, M. Gretz, and G. Underwood, Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms, Aquatic Microbial Ecology, vol.38, pp.169-180, 2005.
DOI : 10.3354/ame038169

A. R. Hanlon, B. Bellinger, K. Haynes, G. Xiao, T. A. Hofmann et al., Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersio-immersion period, Limnology and Oceanography, vol.51, issue.1, pp.79-93, 2006.
DOI : 10.4319/lo.2006.51.1.0079

A. Penna, S. Berluti, N. Penna, and M. Magnani, Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from the Adriatic Sea, Journal of Plankton Research, vol.21, issue.9, pp.1681-1690, 1999.
DOI : 10.1093/plankt/21.9.1681

N. Staats, B. De-winder, L. Stal, and L. Mur, European Journal of Phycology, vol.34, issue.2, pp.161-169, 1999.
DOI : 10.1080/09670269910001736212

E. Magaletti, R. Urbani, P. Sist, C. R. Ferrari, and A. M. Cicero, under N- and P-limitation, European Journal of Phycology, vol.167, issue.2, pp.133-142, 2004.
DOI : 10.4319/lo.1995.40.2.0299

R. Urbani, E. Magaletti, P. Sist, and A. M. Cicero, Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: Effect of P-depletion and growth status, Science of The Total Environment, vol.353, issue.1-3, pp.300-306, 2005.
DOI : 10.1016/j.scitotenv.2005.09.026

X. Ai, J. Liang, Y. Gao, S. C. Lo, -. Lee et al., MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions, Journal of Applied Phycology, vol.157, issue.3, pp.673-684, 2015.
DOI : 10.1016/j.protis.2006.02.003

B. A. Wustman, J. Lind, R. Wetherbee, and M. R. Gretz, Extracellular Matrix Assembly in Diatoms (Bacillariophyceae), Plant Physiology, vol.116, issue.4, pp.1431-1441, 1998.
DOI : 10.1104/pp.116.4.1431

E. Takahashi, J. Ledauphin, D. Goux, and F. Orvain, Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods, Marine and Freshwater Research, vol.60, issue.12, pp.1201-1210, 2009.
DOI : 10.1071/MF08258

S. Zhang, C. Xu, and P. H. Santschi, Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp., Marine Chemistry, vol.112, issue.1-2, pp.81-92, 2008.
DOI : 10.1016/j.marchem.2008.05.009

S. M. Leandro, M. C. Gil, and I. Delgadillo, Partial characterisation of exopolysaccharides exudated by planktonic diatoms maintained in batch cultures, Acta Oecologica, vol.24, pp.49-55, 2003.
DOI : 10.1016/S1146-609X(03)00004-3

R. D. Khandeparker and N. B. Bhosle, Wm.Sm, Biofouling, vol.5, issue.2, pp.117-127, 2001.
DOI : 10.1104/pp.116.4.1431

S. Myklestad, A. Haug, and B. Larsen, Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. II. Preliminary investigation of the extracellular polysaccharide, Journal of Experimental Marine Biology and Ecology, vol.9, issue.2, pp.137-144, 1972.
DOI : 10.1016/0022-0981(72)90042-1

B. Smestad, A. Haug, and S. Myklestad, Production of Carbohydrate by the Marine Diatom Chaetoceros affinis var. Willei (Gran) Hustedt. III. Structural Studies of the Extracellular Polysaccharide., Acta Chemica Scandinavica, vol.28, pp.662-666, 1974.
DOI : 10.3891/acta.chem.scand.28b-0662

B. Smestad, A. Haug, and S. Myklestad, Structural studies of the extracellular polysaccharide produced by the diatom Chaeotoceros curvisetus Cleve, Acta Chem. Scand. B, vol.29, pp.337-340, 1975.
DOI : 10.3891/acta.chem.scand.29b-0337

URL : http://actachemscand.org/pdf/acta_vol_29b_p0337-0340.pdf

E. Percival, M. A. Rahman, and H. Weigel, Chemistry of the polysaccharides of the diatom Coscinodiscus nobilis, Phytochemistry, vol.19, issue.5, pp.809-811, 1980.
DOI : 10.1016/0031-9422(80)85116-8

N. Bhosle, S. Sawant, A. Garg, and A. Wagh, Isolation and Partial Chemical Analysis of Exopolysaccharides from the Marine Fouling Diatom Navicula subinflata, Botanica Marina, vol.129, issue.1-6, pp.103-110, 1995.
DOI : 10.1093/plankt/8.5.985

D. Giroldo, A. A. Vieira, and B. S. Paulsen, RELATIVE INCREASE OF DEOXY SUGARS DURING MICROBIAL DEGRADATION OF AN EXTRACELLULAR POLYSACCHARIDE RELEASED BY A TROPICAL FRESHWATER THALASSIOSIRA SP. (BACILLARIOPHYCEAE)1, Journal of Phycology, vol.39, issue.6, pp.1109-1115, 2003.
DOI : 10.1111/j.0022-3646.2003.03-006.x

A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley et al., Symbol nomenclature for glycan representation, PROTEOMICS, vol.137, issue.24, pp.5398-5399, 2009.
DOI : 10.1002/pmic.200900708

URL : http://europepmc.org/articles/pmc2882983?pdf=render

P. Burda and M. Aebi, The dolichol pathway of N-linked glycosylation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1426, issue.2, pp.1426-239, 1999.
DOI : 10.1016/S0304-4165(98)00127-5

G. Gil, W. H. Velander, and K. E. Van-cott, N-glycosylation microheterogeneity and site occupancy of an Asn-X-Cys sequon in plasma-derived and recombinant protein C, PROTEOMICS, vol.128, issue.9, pp.2555-2567, 2009.
DOI : 10.1093/oxfordjournals.jbchem.a022738

D. F. Zielinska, F. Gnad, J. R. Wi?niewski, and M. Mann, Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints, Cell, vol.141, issue.5, pp.897-907, 2010.
DOI : 10.1016/j.cell.2010.04.012

URL : https://doi.org/10.1016/j.cell.2010.04.012

T. Matsui, E. Takita, T. Sato, S. Kinjo, M. Aizawa et al., N-glycosylation at noncanonical Asn-X-Cys sequences in plant cells, Glycobiology, vol.28, issue.12, pp.994-999, 2011.
DOI : 10.3168/jds.2008-1189

URL : https://academic.oup.com/glycob/article-pdf/21/8/994/5845365/cwq198.pdf

A. Helenius and M. Aebi, Roles of N-Linked Glycans in the Endoplasmic Reticulum, Annual Review of Biochemistry, vol.73, issue.1, pp.1019-1049, 2004.
DOI : 10.1146/annurev.biochem.73.011303.073752

E. Weerapana and B. Imperiali, Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems, Glycobiology, vol.16, issue.6, pp.91-101, 2006.
DOI : 10.1074/jbc.M206114200

URL : https://academic.oup.com/glycob/article-pdf/16/6/91R/2266945/cwj099.pdf

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.9, issue.7219, pp.239-244, 2008.
DOI : 10.1038/nature07410

URL : https://hal.archives-ouvertes.fr/cea-00910244

E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez et al., The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism, Science, vol.306, issue.5693, pp.79-86, 2004.
DOI : 10.1126/science.1101156

. Jgi-genome and . Portal, Fragilariopsis cylindrus Home Available online: http://genome.jgipsf .org/Fracy1/Fracy1, 2014.

C. J. Gobler, D. L. Berry, S. T. Dyhrman, S. W. Wilhelm, A. Salamov et al., Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics, Proc. Natl. Acad. Sci. USA 2011, pp.4352-4357
DOI : 10.1093/plankt/21.6.1153

URL : http://www.pnas.org/content/108/11/4352.full.pdf

B. Baiet, C. Burel, B. Saint-jean, R. Louvet, L. Menu-bouaouiche et al., -Acetylglucosaminyltransferase I Enzyme, Journal of Biological Chemistry, vol.1527, issue.8, pp.6152-6164, 2011.
DOI : 10.1074/jbc.M710279200

E. Mathieu-rivet, M. Kiefer-meyer, G. Vanier, C. Ovide, C. Burel et al., Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals, Frontiers in Plant Science, vol.270
DOI : 10.1074/jbc.270.29.17344

O. Levy-ontman, M. Fisher, Y. Shotland, Y. Weinstein, and Y. Tekoah, Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study, International Journal of Molecular Sciences, vol.24, issue.2, pp.2305-2326, 2014.
DOI : 10.1093/molbev/msm092

A. Varki, Evolutionary Forces Shaping the Golgi Glycosylation Machinery: Why Cell Surface Glycans Are Universal to Living Cells, Cold Spring Harbor Perspectives in Biology, vol.3, issue.6, 2011.
DOI : 10.1101/cshperspect.a005462

URL : http://cshperspectives.cshlp.org/content/3/6/a005462.full.pdf

A. Varki, Biological roles of oligosaccharides: all of the theories are correct, Glycobiology, vol.3, issue.2, pp.97-130, 1993.
DOI : 10.1093/glycob/3.2.97

P. Gagneux and A. Varki, Evolutionary considerations in relating oligosaccharide diversity to biological function, Glycobiology, vol.99, issue.1, pp.747-755, 1999.
DOI : 10.1093/oxfordjournals.jbchem.a135479

URL : https://academic.oup.com/glycob/article-pdf/9/8/747/2453769/9-8-747.pdf

A. Vitale and M. J. Chrispeels, Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies, The Journal of Cell Biology, vol.99, issue.1, pp.133-140, 1984.
DOI : 10.1083/jcb.99.1.133

F. Altmann, H. Schwihla, E. Staudacher, J. Glössl, and L. März, -Glycans, Journal of Biological Chemistry, vol.207, issue.29, pp.17344-17349, 1995.
DOI : 10.1271/bbb.57.841

N. Kröger, C. Bergsdorf, and M. Sumper, A new calcium binding glycoprotein family constitutes a major diatom cell wall component, EMBO J, vol.13, pp.4676-4683, 1994.

J. L. Lind, K. Heimann, E. A. Miller, C. Van-vliet, N. J. Hoogenraad et al., Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans, Planta, vol.203, issue.2, pp.213-221, 1997.
DOI : 10.1007/s004250050184

K. Pathway-database, Available online: http://www.genome.jp/kegg/pathway.html (accessed on 24, 2014.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license