J. Levitt, Responses of Plants to Environmental Stresses, Journal of Range Management, vol.38, issue.5, 1980.
DOI : 10.2307/3899731

H. J. Bohnert, D. J. Nelson, and R. G. Jensen, Adaptations to Environmental Stresses, THE PLANT CELL ONLINE, vol.7, issue.7, pp.1099-1111, 1995.
DOI : 10.1105/tpc.7.7.1099

J. M. Farrant, Mechanisms of Desiccation Tolerance in Angiosperm Resurrection Plants, pp.51-90, 2007.
DOI : 10.1002/9780470376881.ch3

D. Bartels, Desiccation Tolerance Studied in the Resurrection Plant Craterostigma plantagineum, Integrative and Comparative Biology, vol.45, issue.5, pp.696-701, 2005.
DOI : 10.1093/icb/45.5.696

D. F. Gaff, Desiccation-Tolerant Flowering Plants in Southern Africa, Science, vol.174, issue.4013, pp.1033-1034, 1971.
DOI : 10.1126/science.174.4013.1033

J. D. Bewley, Physiological Aspects of Desiccation Tolerance, Annual Review of Plant Physiology, vol.30, issue.1, pp.195-238, 1979.
DOI : 10.1146/annurev.pp.30.060179.001211

S. Porembski and W. Barthlott, Granitic and gneissic outcrops (inselbergs) as centres of diversity for desiccation tolerant vascular plants, Plant Ecology, vol.151, issue.1, pp.19-28, 2001.
DOI : 10.1023/A:1026565817218

L. Kappen and F. Valladares, Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs, " in Handbook of Functional Plant Ecology, F. I. Pugnaire and F. Valladares, pp.9-80, 1999.

M. J. Oliver, J. Velten, and B. D. Mishler, Desiccation Tolerance in Bryophytes: A Reflection of the Primitive Strategy for Plant Survival in Dehydrating Habitats?, Integrative and Comparative Biology, vol.45, issue.5, pp.788-799, 2005.
DOI : 10.1093/icb/45.5.788

M. J. Oliver, Z. Tuba, and B. D. Mishler, e evolution of vegetative desiccation tolerance in land plants, Plant Ecology, vol.151, issue.1, pp.85-100, 2000.
DOI : 10.1023/A:1026550808557

S. J. Miller, M. B. Mudgett, J. W. Schopf, S. Clarke, and R. Berger, Exceptional seed longevity and robust growth: ancient Sacred Lotus from China, American Journal of Botany, vol.8, issue.5, pp.1367-1380, 1995.
DOI : 10.1017/S0033822200013801

M. J. Oliver and J. D. Bewley, Desiccation-Tolerance of Plant Tissues: A Mechanistic Overview, Horticultural Reviews, vol.33, pp.171-214, 1997.
DOI : 10.1017/S0960258500002233

M. J. Oliver, A. J. Wood, and P. O. Mahony, To dryness and beyond preparation for the dried state and rehydration in vegetative desiccation tolerant plants, Plant Growth Regulation, vol.24, issue.3, pp.193-201, 1998.
DOI : 10.1023/A:1005863015130

D. Bartels and F. Salamini, Desiccation Tolerance in the Resurrection Plant Craterostigma plantagineum. A Contribution to the Study of Drought Tolerance at the Molecular Level, PLANT PHYSIOLOGY, vol.127, issue.4, pp.1346-1353, 2001.
DOI : 10.1104/pp.010765

URL : https://hal.archives-ouvertes.fr/hal-00885623

N. Illing, K. J. Denby, H. Collett, A. Shen, and J. M. Farrant, The Signature of Seeds in Resurrection Plants: A Molecular and Physiological Comparison of Desiccation Tolerance in Seeds and Vegetative Tissues, Integrative and Comparative Biology, vol.45, issue.5, pp.771-787, 2005.
DOI : 10.1093/icb/45.5.771

T. J. Close, Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins, Physiologia Plantarum, vol.108, issue.4, pp.795-803, 1996.
DOI : 10.1007/BF00039544

A. D. Neale, C. K. Blomstedt, and P. Bronso, The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress, Plant, Cell and Environment, vol.33, issue.3, pp.265-277, 2000.
DOI : 10.1105/tpc.3.4.371

J. A. Banks, Selaginella and 400 Million Years of Separation, Annual Review of Plant Biology, vol.60, issue.1, pp.223-238, 2009.
DOI : 10.1146/annurev.arplant.59.032607.092851

P. Korall and P. Kenrick, Phylogenetic relationships in Selaginellaceae based on RBCL sequences, American Journal of Botany, vol.89, issue.3, pp.506-517, 2002.
DOI : 10.3732/ajb.89.3.506

, Scientifica

S. Pampurova and P. V. Dijck, The desiccation tolerant secrets of Selaginella lepidophylla: What we have learned so far?, Plant Physiology and Biochemistry, vol.80, pp.285-290, 2014.
DOI : 10.1016/j.plaphy.2014.04.015

X. Wang, S. Chen, and H. Zhang, Revealed by Physiological and Proteomic Analysis, Journal of Proteome Research, vol.9, issue.12, pp.6561-6577, 2010.
DOI : 10.1021/pr100767k

V. Pandey, S. Ranjan, and F. Deeba, Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris, Journal of Plant Physiology, vol.167, issue.16, pp.1351-1359, 2010.
DOI : 10.1016/j.jplph.2010.05.001

M. C. Rodriguez, D. Edsgard, and S. S. Hussain, Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum, The Plant Journal, vol.53, issue.2, pp.212-228, 2010.
DOI : 10.1146/annurev.arplant.53.091401.143329

K. Cooper and J. M. Farrant, Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair, Journal of Experimental Botany, vol.53, issue.375, pp.1805-1813, 2002.
DOI : 10.1093/jxb/erf028

J. R. Phillips, E. Fischer, and M. Baron, Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests, The Plant Journal, vol.1544, issue.5, pp.938-948, 2008.
DOI : 10.1186/gb-2005-6-8-r72

J. P. Moore, E. Nguema-ona, and L. Chevalier, Response of the Leaf Cell Wall to Desiccation in the Resurrection Plant Myrothamnus flabellifolius, PLANT PHYSIOLOGY, vol.141, issue.2, pp.651-662, 2006.
DOI : 10.1104/pp.106.077701

I. Kranner, R. P. Beckett, S. Wornik, M. Zorn, and H. W. Pfeihofer, Revival of a resurrection plant correlates with its antioxidant status, The Plant Journal, vol.40, issue.4, pp.13-24, 2002.
DOI : 10.1093/oxfordjournals.pcp.a029599

G. Jiang, Z. Wang, H. Shang, W. Yang, Z. Hu et al., Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration, Planta, vol.6, issue.6, pp.1405-1420, 2007.
DOI : 10.1021/bk-1995-0600.ch008

V. S. Jovanovic, B. Kukavica, B. Stevanovic, and F. Navari-izzo, Senescence- and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica, Journal of Experimental Botany, vol.57, issue.8, pp.1759-1768, 2006.
DOI : 10.1093/jxb/erl007

K. Georgieva, E. Sarvari, and A. V. Keresztes, Protection of thylakoids against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis, Annals of Botany, vol.125, issue.1, pp.117-126, 2010.
DOI : 10.1111/j.1399-3054.2005.00577.x

R. A. Ingle, U. G. Schmidt, J. M. Farrant, J. A. , and S. G. Mundree, Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa, Plant, Cell & Environment, vol.40, issue.4, pp.435-446, 2007.
DOI : 10.1105/tpc.105.035071

H. Collett, R. Butowt, and J. Smith, Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis, Journal of Experimental Botany, vol.54, issue.392, pp.2593-2595, 2003.
DOI : 10.1093/jxb/erg285

T. Martinelli, In situ localization of glucose and sucrose in dehydrating leaves of Sporobolus stapfianus, Journal of Plant Physiology, vol.165, issue.6, pp.580-587, 2008.
DOI : 10.1016/j.jplph.2007.01.019

C. V. Willigen, N. W. Pammenter, M. A. Jaffer, S. G. Mundree, J. M. Farrant et al., An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation tolerant and sensitive tissues Overexpression of stressinducible OsBURP16, the ? subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice, Functional Plant Biology Plant Cell Environment, vol.30, issue.37 5, pp.1-10, 2003.

L. Brighigna, A. Bennici, C. Tani, and G. Tani, Structural and ultrastructural characterization of Selaginella lepidophylla, a desiccation-tolerant plant, during the rehydration process, Flora - Morphology, Distribution, Functional Ecology of Plants, vol.197, issue.2, pp.81-91, 2002.
DOI : 10.1078/0367-2530-00018

K. A. Platt, M. J. Oliver, and W. W. Omson, Membranes and organelles of dehydratedSelaginella andTortula retain their normal configuration and structural integrity, Protoplasma, vol.129, issue.1-2, pp.57-65, 1994.
DOI : 10.1016/B978-0-12-198080-1.50014-4

O. Toldi, Z. Tuba, and P. Scott, Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops?, Plant Science, vol.176, issue.2, pp.187-199, 2009.
DOI : 10.1016/j.plantsci.2008.10.002

J. M. Alamillo and D. Bartels, Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum, Plant Science, vol.160, issue.6, pp.1161-1170, 2001.
DOI : 10.1016/S0168-9452(01)00356-9

K. B. Schwab, U. Schreiber, and U. Heber, Response of photosynthesis and respiration of resurrection plants to desiccation and rehydration, Planta, vol.34, issue.2, pp.217-227, 1989.
DOI : 10.1007/BF00392810

H. W. Sherwin and J. M. Farrant, Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa, Plant Growth Regulation, vol.24, issue.3, pp.203-210, 1998.
DOI : 10.1023/A:1005801610891

A. Augusti, F. Scartazza, N. F. Izzo, C. L. Sgherri, B. Stevanovic et al., Photosystem II photochemical efficiency, zeaxanthin and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration, Photosynthesis Research, vol.67, issue.1/2, pp.79-88, 2001.
DOI : 10.1023/A:1010692632408

J. M. Farrant, A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species, Plant Ecology, vol.151, issue.1, pp.29-39, 2000.
DOI : 10.1023/A:1026534305831

M. Tuba, C. F. Proctor, and Z. Csintalan, Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerant plants: a comparison and ecological perspective, Plant Growth Regulation, vol.24, issue.3, pp.211-217, 1998.
DOI : 10.1023/A:1005951908229

Z. Tuba, H. K. Lichtenthaler, Z. Csintalan, Z. Nagy, and K. Szente, Reconstitution of chlorophylls and photosynthetic CO 2 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida (Pax), Dur. Et. Schinz Planta, vol.192, issue.3, pp.414-420, 1994.

C. Dinakar and D. Bartels, Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis, Frontiers in Plant Science, vol.4, p.482, 2013.
DOI : 10.3389/fpls.2013.00482

URL : http://journal.frontiersin.org/article/10.3389/fpls.2013.00482/pdf

D. F. Gaff, Responses of desiccation tolerant " resurrection " plants to water stress, " in Structural and Functional Responses to Environmental Stresses: Water Shortages, pp.264-311, 1989.

M. C. Proctor and Z. Tuba, Poikilohydry and homoihydry: antithesis or spectrum of possibilities?, New Phytologist, vol.341, issue.3, pp.327-349, 2002.
DOI : 10.1046/j.1469-8137.2000.00745.x

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00526.x/pdf

P. Alpert, Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?, Journal of Experimental Biology, vol.209, issue.9, pp.1575-1584, 2006.
DOI : 10.1242/jeb.02179

URL : http://jeb.biologists.org/content/jexbio/209/9/1575.full.pdf

]. D. Scientifica51, S. Blasi, L. Puliga, C. Losi, and . Vazzana, S. stapfianus and E. curvula cv. Consol in vivo photosynthesis, PSII activity and ABA content during dehydration, Plant Growth Regulation, vol.25, issue.2, pp.97-104, 1998.

X. Deng, Z. A. Hu, H. X. Wang, X. G. Wen, and T. Y. Kuang, A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration, Plant Science, vol.165, issue.4, pp.851-861, 2003.
DOI : 10.1016/S0168-9452(03)00284-X

J. P. Moore, N. T. Le, and W. F. Brandt, Towards a systems-based understanding of plant desiccation tolerance, Trends in Plant Science, vol.14, issue.2, pp.110-117, 2009.
DOI : 10.1016/j.tplants.2008.11.007

C. Dinakar, D. Djilianov, and D. Bartels, Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense, Plant Science, vol.182, pp.29-41, 2012.
DOI : 10.1016/j.plantsci.2011.01.018

H. Nar, A. Saglam, R. Terzi, Z. Varkonyi, and A. Kadioglu, Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress, Photosynthetica, vol.47, issue.3, pp.429-436, 2009.
DOI : 10.1111/j.1469-8137.2007.02284.x

A. M. Jones, M. H. Bennett, J. W. Mansfield, and M. Grant, Analysis of the defence phosphoproteome ofArabidopsis thaliana using differential mass tagging, PROTEOMICS, vol.219, issue.14, pp.4155-4165, 2006.
DOI : 10.1002/pmic.200500172

D. F. Vecchia, E. T. Asmar, R. Calamassi, N. Rascio, and C. Vazzana, Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus, Plant Growth Regulation, vol.24, issue.3, pp.219-228, 1998.
DOI : 10.1023/A:1005853527769

F. Tardieu, Plant tolerance to water deficit: physical limits and possibilities for progress, Comptes Rendus Geoscience, vol.337, issue.1-2, pp.57-67, 2005.
DOI : 10.1016/j.crte.2004.09.015

M. Vicré, J. M. Farrant, and A. Driouich, Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species, Plant, Cell & Environment, vol.108, issue.11, pp.1329-1340, 2004.
DOI : 10.1104/pp.108.3.1233

L. Jones and S. Mcqueen-mason, A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum, FEBS Letters, vol.559, pp.1-3, 2004.

J. P. Moore, E. E. Nguema-ona, and M. Vicré-gibouin, Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation, Planta, vol.118, issue.3, pp.739-754, 2013.
DOI : 10.1016/0076-6879(86)18062-1

URL : https://hal.archives-ouvertes.fr/hal-01843951

Z. Minic and L. Jouanin, Plant glycoside hydrolases involved in??cell wall polysaccharide degradation, Plant Physiology and Biochemistry, vol.44, issue.7-9, pp.435-449, 2006.
DOI : 10.1016/j.plaphy.2006.08.001

J. Vogel, Unique aspects of the grass cell wall, Current Opinion in Plant Biology, vol.11, issue.3, pp.301-307, 2008.
DOI : 10.1016/j.pbi.2008.03.002

H. , L. Gall, F. Philippe, and J. Domon, Cell wall metabolism in response to abiotic stress, Plants, vol.4, issue.1, pp.112-166, 2015.

W. S. Iljin, Drought Resistance in Plants and Physiological Processes, Annual Review of Plant Physiology, vol.8, issue.1, pp.257-274, 1957.
DOI : 10.1146/annurev.pp.08.060157.001353

J. Farrant, V. C. Willigen, and D. , An investigation into the role of light during desiccation of three angiosperm resurrection plants, Plant, Cell and Environment, vol.35, issue.8, pp.1275-1286, 2003.
DOI : 10.1093/jexbot/53.371.1197

W. W. Omson and K. A. Platt, Conservation of cell order in desiccated mesophyll of Selaginella lepidophylla [Hook and Grev.] Spring, Annals of Botany, vol.79, issue.4, pp.439-447, 1997.

J. Mitra, G. Xu, B. Wang, M. Li, and X. Deng, Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system, Frontiers in Plant Science, vol.4, 2013.
DOI : 10.3389/fpls.2013.00446

URL : https://www.frontiersin.org/articles/10.3389/fpls.2013.00446/pdf

V. Giarola, S. Krey, B. Driesch, and D. Bartels, glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration, New Phytologist, vol.10, issue.Database issue, pp.535-550, 2016.
DOI : 10.1016/j.tplants.2004.12.012

URL : http://onlinelibrary.wiley.com/doi/10.1111/nph.13766/pdf

B. Plancot, G. Vanier, and F. Maire, using various mass spectrometric methods, Rapid Communications in Mass Spectrometry, vol.70, issue.8, pp.908-916, 2014.
DOI : 10.1016/1044-0305(93)85081-8

URL : https://hal.archives-ouvertes.fr/hal-01107955

J. H. Grabber, J. Ralph, C. Lapierre, and Y. Barrì-ere, Genetic and molecular basis of grass cell-wall degradability. I

, Lignin?cell wall matrix interactions, pp.455-465, 2004.

J. R. Phillips, M. J. Oliver, and D. Bartels, Molecular genetics of desiccation and tolerant systems., Desiccation and Survival in Plants: Drying without Dying, pp.19-341, 2002.
DOI : 10.1079/9780851995342.0319

J. P. Moore, M. Vicré-gibouin, J. M. Farrant, and A. Driouich, Adaptations of higher plant cell walls to water loss: drought vs desiccation, Physiologia Plantarum, vol.111, issue.2, pp.237-245, 2008.
DOI : 10.1104/pp.111.3.765

J. P. Moore, G. G. Lindsey, J. M. Farrant, and W. F. Brandt, An Overview of the Biology of the Desiccation-tolerant Resurrection Plant Myrothamnus flabellifolia, Annals of Botany, vol.22, issue.2, pp.211-217, 2007.
DOI : 10.1111/j.1095-8339.1976.tb01395.x

T. Raki´craki´c, M. Lazarevi´clazarevi´c, and ?. Z. Jovanovi´cjovanovi´c, Resurrection plants of the genus Ramonda: prospective survival strategies?unlock further capacity of adaptation, or embark on the path of evolution?, Frontiers in Plant Science, vol.4, p.550, 2013.

F. Deeba, A. K. Pandey, and V. Pandey, Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration, Frontiers in Plant Science, vol.44, issue.327, 2016.
DOI : 10.1023/A:1026525406953

A. Yobi, K. A. Schlauch, and R. L. Tillett, Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics, BMC Plant Biology, vol.3, issue.1, 2017.
DOI : 10.1038/nprot.2008.73

C. Somerville, S. Bauer, and G. Brininstool, Toward a Systems Approach to Understanding Plant Cell Walls, Science, vol.306, issue.5705, pp.2206-2211, 2004.
DOI : 10.1126/science.1102765

N. M. Iraki, R. A. Bressan, P. M. Hasegawa, and N. C. Carpita, Alteration of the Physical and Chemical Structure of the Primary Cell Wall of Growth-Limited Plant Cells Adapted to Osmotic Stress, PLANT PHYSIOLOGY, vol.91, issue.1, pp.39-47, 1989.
DOI : 10.1104/pp.91.1.39

Y. Jiang, Y. Yao, and Y. Wang, Physiological Response, Cell Wall Components, and Gene Expression of Switchgrass under Short-Term Drought Stress and Recovery, Crop Science, vol.52, issue.6, p.2718, 2012.
DOI : 10.2135/cropsci2012.03.0198

N. M. Iraki, N. Singh, R. A. Bressan, and N. C. Carpita, Cell Walls of Tobacco Cells and Changes in Composition Associated with Reduced Growth upon Adaptation to Water and Saline Stress, PLANT PHYSIOLOGY, vol.91, issue.1, pp.48-53, 1989.
DOI : 10.1104/pp.91.1.48

, Scientifica

D. J. Cosgrove and M. C. Jarvis, Comparative structure and biomechanics of plant primary and secondary cell walls, Frontiers in Plant Science, vol.3, pp.1-6, 2012.
DOI : 10.3389/fpls.2012.00204

M. Vicré, H. W. Sherwin, and A. Driouich, Cell Wall Characteristics and Structure of Hydrated and Dry leaves of the Resurrection Plant Craterostigma wilmsii, a Microscopical Study, Journal of Plant Physiology, vol.155, issue.6, pp.719-726, 1999.
DOI : 10.1016/S0176-1617(99)80088-1

J. Y. Choi, Y. S. Seo, and S. J. Kim, Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang), Plant Cell Reports, vol.53, issue.5, pp.867-877, 2011.
DOI : 10.1146/annurev.arplant.53.091401.143329

F. Dai, C. Zhang, and X. Jiang, RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals, PLANT PHYSIOLOGY, vol.160, issue.4, pp.2064-2082, 2012.
DOI : 10.1104/pp.112.207720

Y. Y. Han, A. X. Li, M. R. Zhao, and W. Wang, Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation, Plant Physiology and Biochemistry, vol.54, pp.49-58, 2012.
DOI : 10.1016/j.plaphy.2012.02.007

A. Faik, Xylan Biosynthesis: News from the Grass, PLANT PHYSIOLOGY, vol.153, issue.2, pp.396-402, 2010.
DOI : 10.1104/pp.110.154237

H. V. Scheller and P. Ulvskov, Hemicelluloses, Annual Review of Plant Biology, vol.61, issue.1, pp.263-289, 2010.
DOI : 10.1146/annurev-arplant-042809-112315

D. F. Gaff and R. P. Ellis, Southern African grasses with foliage that revives after dehydration, Bothalia, vol.11, issue.3, pp.305-308, 1974.
DOI : 10.4102/abc.v11i3.1476

U. Christensen, A. Alonso-simon, and H. V. Scheller, Characterization of the primary cell walls of seedlings of Brachypodium distachyon ??? A potential model plant for temperate grasses, Phytochemistry, vol.71, issue.1, pp.62-69, 2010.
DOI : 10.1016/j.phytochem.2009.09.019

B. L. Ridley, M. A. Neill, and D. Mohnen, Pectins: structure, biosynthesis, and oligogalacturonide-related signaling, Phytochemistry, vol.57, issue.6, pp.929-967, 2001.
DOI : 10.1016/S0031-9422(01)00113-3

D. Mohnen, Pectin structure and biosynthesis, Current Opinion in Plant Biology, vol.11, issue.3, pp.266-277, 2008.
DOI : 10.1016/j.pbi.2008.03.006

J. Zandleven, S. O. Sørensen, and J. Harholt, Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana, Phytochemistry, vol.68, issue.8, pp.1219-1226, 2007.
DOI : 10.1016/j.phytochem.2007.01.016

N. C. Carpita and D. M. Gibeaut, Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth, The Plant Journal, vol.99, issue.1, pp.1-30, 1993.
DOI : 10.1111/j.1365-313X.1993.00637.x

J. Harholt, A. Suttangkakul, and H. V. Scheller, Biosynthesis of Pectin, PLANT PHYSIOLOGY, vol.153, issue.2, pp.384-395, 2010.
DOI : 10.1104/pp.110.156588

S. H. An, K. H. Sohn, and H. W. Choi, Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance, Planta, vol.555, issue.1, pp.61-78, 2008.
DOI : 10.1104/pp.106.2.429

M. R. Leucci, M. S. Lenucci, G. Piro, and G. Dalessandro, Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance, Journal of Plant Physiology, vol.165, issue.11, pp.1168-1180, 2008.
DOI : 10.1016/j.jplph.2007.09.006

A. M. Showalter, Structure and Function of Plant Cell Wall Proteins, THE PLANT CELL ONLINE, vol.5, issue.1, pp.9-23, 1993.
DOI : 10.1105/tpc.5.1.9

G. I. Cassab, L. Zagorchev, P. Kamenova, and M. Odjakova, PLANT CELL WALL PROTEINS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.49, issue.1, pp.281-309, 1998.
DOI : 10.1146/annurev.arplant.49.1.281

E. Nguema-ona, S. Coimbra, and M. Vicré-gibouin, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Annals of Botany, vol.136, issue.1, pp.383-404, 2012.
DOI : 10.1104/pp.104.046367

URL : https://hal.archives-ouvertes.fr/hal-01844523

D. T. Lamport, M. J. Kieliszewski, and A. M. Showalter, Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function*, New Phytologist, vol.291, issue.3, pp.479-492, 2006.
DOI : 10.1126/science.1057175

H. Ma and J. Zhao, Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.), Journal of Experimental Botany, vol.52, issue.10, pp.2647-2668, 2010.
DOI : 10.1023/A:1023978210001

M. J. Kieliszewski and D. T. Lamport, Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny, The Plant Journal, vol.5, issue.2, pp.157-172, 1994.
DOI : 10.1046/j.1365-313X.1994.05020157.x

M. J. Kieliszewski and E. Shpak, Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins, Cellular and Molecular Life Sciences, vol.58, issue.10, pp.1386-1398, 2001.
DOI : 10.1007/PL00000783

T. Oka, F. Saito, and Y. Shimma, Characterization of Endoplasmic Reticulum-Localized UDP-D-Galactose: Hydroxyproline O-Galactosyltransferase Using Synthetic Peptide Substrates in Arabidopsis, PLANT PHYSIOLOGY, vol.152, issue.1, pp.332-340, 2010.
DOI : 10.1104/pp.109.146266

D. Evers, I. Lefèvre, and S. Legay, Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach, Journal of Experimental Botany, vol.8, issue.9, pp.2327-2343, 2010.
DOI : 10.1093/dnares/8.3.115

P. Clauw, F. Coppens, and K. D. Beuf, Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis, Plant Physiology, vol.167, issue.3, pp.800-816, 2015.
DOI : 10.1104/pp.114.254284

URL : https://hal.archives-ouvertes.fr/hal-01607038

A. Mangeon, R. M. Junqueira, and G. Sachetto-martins, Functional diversity of the plant glycine-rich proteins superfamily, Plant Signaling & Behavior, vol.230, issue.2, pp.99-104, 2010.
DOI : 10.1007/s00425-009-0940-4

A. Mousavi and Y. Hotta, Glycine-Rich Proteins: A Class of Novel Proteins, Applied Biochemistry and Biotechnology, vol.120, issue.3, pp.169-174, 2005.
DOI : 10.1385/ABAB:120:3:169

A. Fusaro, A. Mangeon, and R. M. Junqueira, Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) encoding glycine-rich proteins (GRPs), Genetics and Molecular Biology, vol.323, issue.1-4, pp.263-273, 2001.
DOI : 10.1038/323110a0

C. L. Sgherri, B. Loggini, A. Bochicchio, and F. Navari-izzo, Antioxidant system in Boea hygroscopica: Changes in response to desiccation and rehydration, Phytochemistry, vol.37, issue.2, pp.377-381, 1994.
DOI : 10.1016/0031-9422(94)85063-1

F. A. Hoekstra, Differential Longevities in Desiccated Anhydrobiotic Plant Systems, Integrative and Comparative Biology, vol.45, issue.5, pp.725-733, 2005.
DOI : 10.1093/icb/45.5.725

M. F. Quartacci, C. Pinzino, C. L. Sgherri, D. F. Vecchia, and F. Navariizzo, Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat, Physiologia Plantarum, vol.104, issue.1, pp.87-93, 2002.
DOI : 10.1007/s004250050247

F. Navari-izzo, F. Ricci, C. Vazzana, and M. F. Quartacci, Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica changes in lipids upon Scientifica 15

, dehydration and rehydration, Physiologia Plantarum, vol.94, issue.1, pp.135-142, 1995.

M. F. Quartacci, M. Forli, N. Rascio, F. Dallavecchia, A. Bochicchio et al., : lipid composition and cellular ultrastructure during dehydration and rehydration, Journal of Experimental Botany, vol.48, issue.6, pp.1269-1279, 1997.
DOI : 10.1093/jxb/48.6.1269

J. Ingram and D. Bartels, THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.47, issue.1, pp.377-403, 1996.
DOI : 10.1146/annurev.arplant.47.1.377

T. Hilbricht, S. Varotto, V. Sgaramella, D. Bartels, F. Salamini et al., New Phytologist, vol.19, issue.3, pp.877-887, 2008.
DOI : 10.1007/s00438-005-0027-2

D. Bartels, K. Schneider, G. Terstappen, D. Piatkowski, and F. Salamini, Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum, Planta, vol.181, issue.1, pp.27-34, 1990.
DOI : 10.1007/BF00202321

D. Piatkowski, K. Schneider, F. Salamini, and D. Bartels, Characterization of Five Abscisic Acid-Responsive cDNA Clones Isolated from the Desiccation-Tolerant Plant Craterostigma plantagineum and Their Relationship to Other Water-Stress Genes, PLANT PHYSIOLOGY, vol.94, issue.4, pp.1682-1688, 1990.
DOI : 10.1104/pp.94.4.1682

D. Michel, F. Salamini, D. Bartels, P. Dale, M. Baga et al., Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum, The Plant Journal, vol.4, issue.1, pp.29-40, 1993.
DOI : 10.1046/j.1365-313X.1993.04010029.x

W. Frank, T. Munnik, K. Kerkmann, F. Salamini, and D. Bartels, Water Deficit Triggers Phospholipase D Activity in the Resurrection Plant Craterostigma plantagineum, THE PLANT CELL ONLINE, vol.12, issue.1, pp.111-123, 2000.
DOI : 10.1105/tpc.12.1.111

G. Iturriaga, L. Leyns, A. Villegas, R. Gharaibeh, F. Salamini et al., A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation, Plant Molecular Biology, vol.38, issue.4, pp.707-716, 1996.
DOI : 10.1007/BF00020211

A. Ditzer and D. Bartels, Identification of a dehydration and ABA-responsive promoter regulon and isolation of corresponding DNA binding proteins for the group 4 LEA gene CpC2 from C. plantagineum, Plant Molecular Biology, vol.136, issue.21, pp.643-663, 2006.
DOI : 10.1128/MCB.17.11.6303

X. Deng, J. Phillips, and A. Brautigam, A Homeodomain Leucine Zipper Gene from Craterostigma plantagineum Regulates Abscisic Acid Responsive Gene Expression and Physiological Responses, Plant Molecular Biology, vol.6, issue.3, pp.469-489, 2006.
DOI : 10.1079/9780851995342.0319

URL : https://digital.csic.es/bitstream/10261/65443/1/restringido.pdf

X. Deng, J. Phillips, A. H. Meijer, F. Salamini, and D. Bartels, Characterization of five novel dehydration responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum, Plant Molecular Biology, vol.49, issue.6, pp.601-610, 2002.
DOI : 10.1023/A:1015501205303

T. Hilbricht, F. Salamini, and D. Bartels, CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst, The Plant Journal, vol.4, issue.3, pp.293-303, 2002.
DOI : 10.1089/cmb.1997.4.325

L. Dure, Structural motifs of LEA proteins in higher plants, " in Responses of Plants to Cellular Dehydration during Environmental Stress, American Society for Plant Physiology, pp.104-118, 1993.

F. A. Hoekstra, E. A. Golovina, F. A. Tetteroo, and W. F. Wolkers, Induction of Desiccation Tolerance in Plant Somatic Embryos: How Exclusive Is the Protective Role of Sugars?, Cryobiology, vol.43, issue.2, pp.140-150, 2001.
DOI : 10.1006/cryo.2001.2358

J. H. Crowe, F. A. Hoekstra, and L. M. Crowe, Anhydrobiosis, Annual Review of Physiology, vol.54, issue.1, pp.579-599, 1992.
DOI : 10.1146/annurev.ph.54.030192.003051

M. J. Wise and A. Tunnacliffe, POPP the question: what do LEA proteins do?, Trends in Plant Science, vol.9, issue.1, pp.13-17, 2004.
DOI : 10.1016/j.tplants.2003.10.012

J. L. Reyes, M. J. Rodrigo, and J. M. Cokmenero-flores, Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro, Plant, Cell and Environment, vol.127, issue.6, pp.709-718, 2005.
DOI : 10.1093/oxfordjournals.jbchem.a022648

K. Goyal, L. J. Walton, and A. Tunnacliffe, LEA proteins prevent protein aggregation due to water stress, Biochemical Journal, vol.388, issue.1, pp.151-157, 2005.
DOI : 10.1042/BJ20041931

R. A. Stacy and R. B. Aalen, Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteinsin plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis, Planta, vol.206, issue.3, pp.476-478, 1998.
DOI : 10.1007/s004250050424

A. A. Garay, C. J. Flores, A. Garciarrubio, and A. A. Covarrubias, Highly Hydrophilic Proteins in Prokaryotes and Eukaryotes Are Common during Conditions of Water Deficit, Journal of Biological Chemistry, vol.192, issue.23, pp.5668-5674, 2000.
DOI : 10.1128/MCB.15.9.4754

A. Solomon, R. Salomon, I. Paperna, and I. Glazer, Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein, Parasitology, vol.121, issue.4, pp.409-416, 2000.
DOI : 10.1017/S0031182099006563

J. A. Browne, K. M. Dolan, T. Tyson, K. Goyal, A. Tunnacliffe et al., Eukaryotic Cell, vol.3, issue.4, pp.966-975, 2004.
DOI : 10.1128/EC.3.4.966-975.2004

L. Mtwisha, W. Brandt, S. Mccready, and G. G. Lindsey, HSP 12 is a LEA like protein in Saccharomyces cerevisiae, Plant Molecular Biology, vol.37, issue.3, pp.513-521, 1998.
DOI : 10.1023/A:1005904219201

S. Abba, S. Ghignone, and P. Bonfante, A dehydrationinducible gene in the truffle Tuber borchii identifies a novel group of dehydrins, BMC Genomics, vol.7, issue.1, p.39, 2006.
DOI : 10.1186/1471-2164-7-39

H. Rohrig, J. Schmidt, T. Colby, A. Brautigam, P. Hufnagel et al., Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation, Plant, Cell and Environment, vol.2, issue.8, pp.1606-167, 2006.
DOI : 10.1016/j.tplants.2003.10.012

J. P. Moore, K. L. Westall, and N. Ravenscroft, -galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation, Biochemical Journal, vol.385, issue.1, pp.301-308, 2005.
DOI : 10.1042/BJ20040499

M. Battaglia, Y. O. Carrillo, A. Garciaarrubio, F. Campos, and A. A. Covarrubias, The Enigmatic LEA Proteins and Other Hydrophilins, PLANT PHYSIOLOGY, vol.148, issue.1, pp.6-24, 2008.
DOI : 10.1104/pp.108.120725

A. Tunnacliffe and M. J. Wise, The continuing conundrum of the LEA proteins, Naturwissenschaften, vol.32, issue.Database issue, pp.791-812, 2007.
DOI : 10.1093/oxfordjournals.jbchem.a022648

E. Sivamani, A. Bahieldin, and J. M. Wraith, Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene, Plant Science, vol.155, issue.1, pp.1-9, 2000.
DOI : 10.1016/S0168-9452(99)00247-2

R. Sunkar, V. Chinnusamy, J. Zhu, and J. K. Zhu, Small RNAs as big players in plant abiotic stress responses and nutrient deprivation, Trends in Plant Science, vol.12, issue.7, pp.301-309, 2007.
DOI : 10.1016/j.tplants.2007.05.001

J. R. Phillips, T. Dalmay, and D. Bartels, The role of small RNAs in abiotic stress, FEBS Letters, vol.274, issue.19, pp.3592-3597, 2007.
DOI : 10.1007/s00438-005-0027-2

F. Furini, C. Koncz, F. Salamini, and D. Bartels, High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum, The EMBO Journal, vol.16, issue.12, pp.3599-3608, 1997.
DOI : 10.1093/emboj/16.12.3599

O. Leprince and J. Buitink, Desiccation tolerance: From genomics to the field, Plant Science, vol.179, issue.6, pp.554-564, 2010.
DOI : 10.1016/j.plantsci.2010.02.011

URL : https://hal.archives-ouvertes.fr/hal-00729694

H. B. Scott and M. J. Oliver, Journal of Experimental Botany, vol.45, issue.5, pp.577-583, 1994.
DOI : 10.1093/jxb/45.5.577

A. J. Wood and M. J. Oliver, Translational control in plant stress: the formation of messenger ribonucleoprotein particles (mRNPs) in response to desiccation of Tortula ruralis gametophytes, The Plant Journal, vol.25, issue.4, pp.359-370, 1999.
DOI : 10.1111/j.1432-1033.1969.tb00651.x

O. Zeng, X. B. Chen, and A. J. Wood, Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light, Journal of Experimental Botany, vol.53, issue.371, pp.1197-1205, 2002.
DOI : 10.1093/jexbot/53.371.1197

M. J. Oliver, S. Dowd, J. Zaragoza, S. Mauget, and P. Payton, e rehydration transcriptome of the desiccation tolerant bryophyte Tortula ruralis: transcript classification and analysis, BMC Genomics, vol.5, issue.1, p.89, 2004.
DOI : 10.1186/1471-2164-5-89

R. Zentella, J. O. Gallardo, and P. Van-dijck, Mutant, Plant Physiology, vol.119, issue.4, pp.1473-1482, 1999.
DOI : 10.1104/pp.119.4.1473

T. N. Le, C. K. Blomstedt, and J. Kuang, Functional Plant Biology, vol.34, issue.7, pp.589-600, 2007.
DOI : 10.1071/FP06231

S. G. Mundree, A. Whittaker, J. A. , and J. M. Farrant, An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker, Planta, vol.211, issue.5, pp.693-700, 2000.
DOI : 10.1007/s004250000331

S. B. Mowla, J. A. Omson, J. M. Farrant, and S. G. Mundree, A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker, Planta, vol.215, issue.5, pp.716-726, 2002.
DOI : 10.1007/s00425-002-0819-0

A. Lehner, D. Chopera, and S. Peter, -inositol 1-phosphate synthase, Functional Plant Biology, vol.35, issue.2, pp.26-39, 2008.
DOI : 10.1071/FP07142_CO

I. Mulako, J. M. Farrant, H. Collett, and N. Illing, Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz, Journal of Experimental Botany, vol.58, issue.14, pp.3885-3901, 2008.
DOI : 10.1093/jxb/erm228

H. M. Collett, A. Shen, M. Gardner, J. M. Farrant, K. J. Denby et al., Towards transcript profiling of desiccation tolerance in Xerophyta humilis: Construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration, Physiologia Plantarum, vol.19, issue.1, pp.39-53, 2004.
DOI : 10.1093/jexbot/53.371.1197

C. Bockel, F. Salamini, and D. Bartels, Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum, Journal of Plant Physiology, vol.152, issue.2-3, pp.158-166, 1998.
DOI : 10.1016/S0176-1617(98)80127-2

T. S. Gechev, M. Benina, and T. Obata, Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis, Cellular and Molecular Life Sciences, vol.60, issue.4, pp.689-709, 2013.
DOI : 10.1111/j.1365-313X.2009.03991.x

M. J. Oliver, R. Jain, T. S. Balbuena, G. Agrawal, F. Gasulla et al., Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration, Phytochemistry, vol.72, issue.10, pp.1273-1284, 2011.
DOI : 10.1016/j.phytochem.2010.10.020

D. Michel, A. Furini, F. Salamini, and D. Bartels, Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum, Plant Molecular Biology, vol.236, issue.4, pp.549-560, 1994.
DOI : 10.1038/newbio244029a0

R. Velasco, F. Salamini, and D. Bartels, Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum, Plant Molecular Biology, vol.101, issue.1, pp.541-546, 1994.
DOI : 10.1007/BF00039567

J. M. Alamillo and D. Bartels, Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum, Plant, Cell and Environment, vol.33, issue.3, pp.300-310, 1996.
DOI : 10.1105/tpc.6.2.251

T. Ndimba, J. M. Farrant, J. , and S. Mundree, Molecular characterization of XVT8, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker, Plant Growth Regulation, vol.35, issue.2, pp.137-145, 2001.
DOI : 10.1023/A:1014433821730

A. Goday, S. D. Martinez, J. Gómez, P. Puigdomènech, and M. Pagès, Gene Expression in Developing Zea mays Embryos: Regulation by Abscisic Acid of a Highly Phosphorylated 23- to 25-kD Group of Proteins, PLANT PHYSIOLOGY, vol.88, issue.3, pp.564-569, 1988.
DOI : 10.1104/pp.88.3.564

C. K. Blomstedt, R. D. Gianello, D. F. Gaff, J. D. Hamill, and A. D. Neale, Differential gene expression in desiccation-tolerant and desiccation-sensitive tissue of the resurrection grass, Sporobolus stapfianus, Australian Journal of Plant Physiology, vol.25, issue.8, pp.937-946, 1998.
DOI : 10.1071/PP98113

S. Marais, J. A. Omson, J. M. Farrant, and S. G. Mundree, XvVHA-c''1- a novel stress-responsive V-ATPase subunit c'' homologue isolated from the resurrection plant Xerophyta viscosa, Physiologia Plantarum, vol.112, issue.1, pp.54-61, 2004.
DOI : 10.1007/PL00013879

M. J. Oliver, L. Guo, D. Alexander, J. Ryals, B. Wone et al., The Plant Cell, vol.23, issue.4, pp.1231-1248, 2011.
DOI : 10.1105/tpc.110.082800

A. Yobi, B. W. Wone, and W. Xu, reveals insights into the resurrection trait, The Plant Journal, vol.168, issue.6, pp.983-999, 2012.
DOI : 10.1016/j.plantsci.2004.07.018

A. C. Leopold and C. W. Vertucci, Physical attributes of desiccated seeds, Membranes, metabolism and Dry Scientifica 17

A. C. Organisms and . Leopold, , pp.22-34, 1986.

C. W. Vertucci and J. M. Farrant, Acquisition and loss of desiccation-tolerance, pp.237-0271, 1995.

W. Hartung, P. Schiller, and D. , Physiology of Poikilohydric Plants, Progress in Botany, vol.59, pp.299-327, 1998.
DOI : 10.1007/978-3-642-80446-5_11

M. J. Oliver, A. G. Murdock, and B. D. Mishler, Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes, BMC Genomics, vol.11, issue.1, p.143, 2010.
DOI : 10.1186/1471-2164-11-143

A. Yobi, B. W. Wone, and W. Xu, Metabolomic Profiling in Selaginella lepidophylla at Various Hydration States Provides New Insights into the Mechanistic Basis of Desiccation Tolerance, Molecular Plant, vol.6, issue.2, pp.369-385, 2013.
DOI : 10.1093/mp/sss155

F. Gasulla, K. Vom-dorp, and I. Dombrink, : a comparative approach, The Plant Journal, vol.21, issue.Supplement, pp.726-741, 2013.
DOI : 10.1105/tpc.109.071795

R. Alcázar, T. Altabella, and F. Marco, Polyamines: molecules with regulatory functions in plant abiotic stress tolerance, Planta, vol.145, issue.6, pp.1237-1249, 2010.
DOI : 10.1042/bj0840292

R. Alcázar, M. Bitrián, D. Bartels, C. Koncz, T. Altabella et al., Plant Signaling & Behavior, vol.6, issue.2, pp.243-250, 2011.
DOI : 10.1016/0003-9861(61)90141-2

R. Appels, J. Nystrom-persson, and G. Keeble-gagnere, Advances in genome studies in plants and animals, Functional & Integrative Genomics, vol.104, issue.17, pp.1-9, 2014.
DOI : 10.1007/s00414-013-0953-1

V. Giarola, Q. Hou, and D. Bartels, Angiosperm Plant Desiccation Tolerance: Hints from Transcriptomics and Genome Sequencing, Trends in Plant Science, vol.22, issue.8, pp.705-717, 2017.
DOI : 10.1016/j.tplants.2017.05.007

M. D. Bennett and I. J. Leitch, Nuclear DNA amounts in angiosperms: targets, trends and tomorrow, Annals of Botany, vol.107, issue.3, pp.467-590, 2011.
DOI : 10.1093/aob/mcq258

M. D. Costa, M. A. Artur, and J. Maia, A footprint of desiccation tolerance in the genome of Xerophyta viscosa, Nature Plants, vol.3, issue.4, p.17038, 2017.
DOI : 10.1371/journal.pcbi.0030206

URL : https://hal.archives-ouvertes.fr/hal-01608651

L. Xiao, G. Yang, and L. Zhang, : A blueprint for survival of dehydration, Proceedings of the National Academy of Sciences, vol.2007, issue.18, pp.5833-5837, 2015.
DOI : 10.1046/j.0016-8025.2003.01052.x

V. R. Buren, D. Bryant, and P. P. Edger, Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum, Nature, vol.527, pp.508-511, 2015.

K. Schneider, B. Wells, E. Schmelzer, F. Salamini, and D. Bartels, Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst, Planta, vol.189, issue.1, pp.120-131, 1993.
DOI : 10.1007/BF00201352

Y. Ekmekci, A. Bohms, J. A. , and S. G. Mundree, Photochemical and Antioxidant Responses in the Leaves of Xerophyta viscosa Baker and Digitaria sanguinalis L. under Water Deficit, Zeitschrift f??r Naturforschung C, vol.60, issue.5-6, pp.5-6, 2005.
DOI : 10.1515/znc-2005-5-612

S. K. Cho, J. E. Kim, and J. Park, plants, FEBS Letters, vol.7, issue.13, pp.3136-3144, 2006.
DOI : 10.1105/tpc.7.10.1555

W. Majeran, B. Zybailov, A. J. Ytterberg, J. Dunsmore, Q. Sun et al., Differentiation for Chloroplast Membrane Proteomes in Maize Mesophyll and Bundle Sheath Cells, Molecular & Cellular Proteomics, vol.354, issue.9, pp.1609-1638, 2008.
DOI : 10.1038/nbt1300

C. W. Turck, A. M. Falick, and J. A. Kowalak, The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 Study, Molecular & Cellular Proteomics, vol.6, issue.8, pp.1291-1298, 2007.
DOI : 10.1016/j.cell.2006.10.036

G. Bernacchia, G. Schwall, F. Lottspeich, F. Salamini, and D. Bartels, e transketolase gene fily of the resurrection plant Craterostigma plantagineum: differential expression during the rehydration phase, EMBO Journal, vol.14, issue.3, pp.610-618, 1995.

Y. Zhu, B. Wang, and J. Phillips, Plant and Cell Physiology, vol.56, issue.7, pp.1429-1441, 2015.
DOI : 10.1007/s11103-009-9538-2

. Hindawi-www and . Hindawi,