Fractional powers on noncommutative L p for p < 1 - Archive ouverte HAL Access content directly
Journal Articles Advances in Mathematics Year : 2018

Fractional powers on noncommutative L p for p < 1

Éric Ricard

Abstract

We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando.
Fichier principal
Vignette du fichier
ando8_bib.pdf (378.85 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01817762 , version 1 (18-06-2018)

Identifiers

Cite

Éric Ricard. Fractional powers on noncommutative L p for p < 1. Advances in Mathematics, 2018, 333, pp.194-211. ⟨10.1016/j.aim.2018.05.024⟩. ⟨hal-01817762⟩
26 View
54 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More