Skip to Main content Skip to Navigation
Journal articles

Fractional powers on noncommutative L p for p < 1

Abstract : We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando.
Document type :
Journal articles
Complete list of metadata

Cited literature [31 references]  Display  Hide  Download
Contributor : Éric Ricard Connect in order to contact the contributor
Submitted on : Monday, June 18, 2018 - 1:07:41 PM
Last modification on : Wednesday, November 3, 2021 - 6:17:46 AM
Long-term archiving on: : Wednesday, September 19, 2018 - 10:16:34 PM


Files produced by the author(s)




Éric Ricard. Fractional powers on noncommutative L p for p < 1. Advances in Mathematics, Elsevier, 2018, 333, pp.194-211. ⟨10.1016/j.aim.2018.05.024⟩. ⟨hal-01817762⟩



Les métriques sont temporairement indisponibles