E. M. Lord and S. D. Russell, The Mechanisms of Pollination and Fertilization in Plants, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.81-105, 2002.
DOI : 10.1146/annurev.cellbio.18.012502.083438

M. K. Kandasamy, J. B. Nasrallah, and M. E. Nasrallah, Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis, Development, vol.120, pp.3405-3418, 1994.

K. A. Lennon, S. Roy, P. K. Hepler, and E. M. Lord, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sexual Plant Reproduction, vol.11, issue.1, pp.49-59, 1998.
DOI : 10.1007/s004970050120

R. Palanivelu and D. Preuss, Pollen tube targeting and axon guidance: parallels in tip growth mechanisms, Trends in Cell Biology, vol.10, issue.12, pp.517-524, 2000.
DOI : 10.1016/S0962-8924(00)01849-3

S. Kim, J. C. Mollet, J. Dong, K. Zhang, S. Y. Park et al., Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism, Proc. Natl. Acad. Sci. USA 2003, pp.16125-16130
DOI : 10.1073/pnas.90.18.8332

URL : http://www.pnas.org/content/100/26/16125.full.pdf

S. Mccormick and H. Yang, Is there more than one way to attract a pollen tube? Trends Plant Sci, pp.260-263, 2005.

L. C. Boavida, A. M. Vieira, J. D. Becker, and J. A. Feijò, Gametophyte interaction and sexual reproduction: how plants make a zygote, The International Journal of Developmental Biology, vol.49, issue.5-6, pp.615-632, 2005.
DOI : 10.1387/ijdb.052023lb

URL : http://www.ijdb.ehu.es/web/descarga/paper/052023lb

M. A. Johnson and E. M. Lord, Extracellular guidance cues and intracellular signaling pathways that direct pollen tube growth. In The Pollen Tube: A Cellular and Molecular Perspective, pp.223-242, 2006.
DOI : 10.1007/7089_051

J. C. Mollet, C. Faugeron, and H. Morvan, Cell adhesion, separation and guidance in compatible plant reproduction, Annu. Plant Rev, vol.25, pp.69-90, 2007.
DOI : 10.1002/9780470988824.ch4

URL : https://hal.archives-ouvertes.fr/hal-00698519

H. J. Wang, J. C. Huang, and G. Jauh, Pollen Germination and Tube Growth, Adv. Bot. Res, vol.54, pp.1-52, 2010.
DOI : 10.1016/S0065-2296(10)54001-1

A. Boisson-dernier, S. A. Kessler, and U. Grossniklaus, The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals, Journal of Experimental Botany, vol.14, issue.6, pp.1581-1591, 2011.
DOI : 10.1016/j.tplants.2009.03.008

A. Geitmann and M. Steer, The Architecture and properties of the pollen tube cell wall In The Pollen Tube: A Cellular and Molecular Perspective, pp.177-200, 2006.

A. Geitmann, How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry, Sexual Plant Reproduction, vol.334, issue.Suppl, pp.63-71, 2010.
DOI : 10.1091/mbc.12.8.2534

E. Nguema-ona, S. Coimbra, M. Vicré-gibouin, J. C. Mollet, and A. Driouich, Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects, Annals of Botany, vol.136, issue.1, pp.383-404, 2012.
DOI : 10.1104/pp.104.046367

URL : https://academic.oup.com/aob/article-pdf/110/2/383/17005990/mcs143.pdf

A. Y. Cheung and H. M. Wu, Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes, Annual Review of Plant Biology, vol.59, issue.1, pp.547-572, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092921

A. Moscatelli, F. Ciampolini, S. Rodigheiro, E. Onelli, M. Cresti et al., Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold, Journal of Cell Science, vol.120, issue.21, pp.3804-3819, 2007.
DOI : 10.1242/jcs.012138

URL : http://jcs.biologists.org/content/joces/120/21/3804.full.pdf

J. Bove, B. Vaillancourt, J. Kroeger, P. K. Hepler, P. W. Wiseman et al., Magnitude and Direction of Vesicle Dynamics in Growing Pollen Tubes Using Spatiotemporal Image Correlation Spectroscopy and Fluorescence Recovery after Photobleaching, PLANT PHYSIOLOGY, vol.147, issue.4, pp.1646-1658, 2008.
DOI : 10.1104/pp.108.120212

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492615

A. Moscatelli and A. Idilli, Pollen Tube Growth: a Delicate Equilibrium Between Secretory and Endocytic Pathways, Journal of Integrative Plant Biology, vol.59, issue.8, pp.727-739, 2009.
DOI : 10.1091/mbc.9.1.173

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2009.00842.x/pdf

L. Zonia, Spatial and temporal integration of signalling networks regulating pollen tube growth, Journal of Experimental Botany, vol.63, issue.3, pp.61-1939, 2010.
DOI : 10.1016/j.tplants.2009.03.008

URL : https://academic.oup.com/jxb/article-pdf/61/7/1939/1609503/erq073.pdf

S. Roy, K. J. Eckard, S. Lancelle, P. K. Hepler, and E. M. Lord, High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes, Protoplasma, vol.149, issue.1-2, pp.87-98, 1997.
DOI : 10.1007/BF01280737

Y. Q. Li, C. Faleri, A. Geitmann, H. Q. Zhang, and M. Cresti, Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes ofNicotiana tabacum L., Protoplasma, vol.99, issue.1-2, pp.26-36, 1995.
DOI : 10.1007/BF01280289

C. Ferguson, T. T. Teeri, M. Siika-aho, S. M. Read, and A. Bacic, Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum, Planta, vol.206, issue.3, pp.452-460, 1998.
DOI : 10.1007/s004250050421

K. A. Lennon and E. M. Lord, In vivo pollen tube cell ofArabidopsis thaliana I. Tube cell cytoplasm and wall, Protoplasma, vol.85, issue.3, pp.45-56, 2000.
DOI : 10.1042/bj0850383

J. Derksen, B. Knuiman, K. Hoedemaekers, A. Guyon, S. Bonhomme et al., Growth and cellular organization of Arabidopsis pollen tubes in vitro, Sexual Plant Reproduction, vol.15, issue.3, pp.133-139, 2002.
DOI : 10.1007/s00497-002-0149-1

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and Immunocytological Characterizations of Arabidopsis Pollen Tube Cell Wall, PLANT PHYSIOLOGY, vol.153, issue.4, pp.1563-1576, 2010.
DOI : 10.1104/pp.110.158881

URL : https://hal.archives-ouvertes.fr/hal-01805112

Y. Chebli, M. Kaneda, R. Zerzour, and A. Geitmann, The Cell Wall of the Arabidopsis Pollen Tube--Spatial Distribution, Recycling, and Network Formation of Polysaccharides, PLANT PHYSIOLOGY, vol.160, issue.4, pp.1940-1955, 2012.
DOI : 10.1104/pp.112.199729

J. Derksen, Y. Q. Li, B. Knuiman, and H. Geurts, The wall ofPinus sylvestris L. pollen tubes, Protoplasma, vol.175, issue.1-4, pp.26-36, 1999.
DOI : 10.1007/BF01279072

R. Yatomi, S. Nakamura, and N. Nakamura, Immunochemical and cytochemical detection of wall components of germinated pollen of gymnosperms, Grana, vol.15, issue.1, pp.21-28, 2002.
DOI : 10.1111/j.1469-8137.1989.tb00697.x

Y. Qin, D. Chen, and J. Zhao, Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L., Protoplasma, vol.16, issue.1-2, pp.43-53, 2007.
DOI : 10.1007/s00709-007-0245-z

E. Parre and A. Geitmann, Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense, Planta, vol.8, issue.4, pp.582-592, 2005.
DOI : 10.1007/s00425-004-1368-5

Y. Hasegawa, S. Nakamura, S. Kakizoe, M. Sato, and N. Nakamura, Immunocytochemical and chemical analyses of Golgi vesicles isolated from the germinated pollen ofCamellia japonica, Journal of Plant Research, vol.8, issue.3, pp.421-429, 1998.
DOI : 10.1177/13.8.629

J. Z. Wu, Y. Lin, X. L. Zhang, D. W. Pang, and J. Zhao, IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri, Journal of Experimental Botany, vol.59, issue.9, pp.2529-2543, 2008.
DOI : 10.1093/jxb/ern119

I. Abreu and M. Oliveira, Immunolocalisation of arabinogalactan proteins and pectins in Actinidia deliciosa pollen, Protoplasma, vol.224, pp.123-128, 2004.
DOI : 10.1007/s00709-004-0049-3

J. Puhlmann, E. Bucheli, M. J. Swain, N. Dunning, P. Albersheim et al., Generation of Monoclonal Antibodies against Plant Cell-Wall Polysaccharides (I. Characterization of a Monoclonal Antibody to a Terminal [alpha]-(1->2)-Linked Fucosyl-Containing Epitope, Plant Physiology, vol.104, issue.2, pp.699-710, 1994.
DOI : 10.1104/pp.104.2.699

S. E. Marcus, Y. Verhertbruggen, C. Herve, J. J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, BMC Plant Biology, vol.8, issue.1, pp.60-71, 2008.
DOI : 10.1186/1471-2229-8-60

URL : https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/1471-2229-8-60?site=bmcplantbiol.biomedcentral.com

M. H. Clausen, W. G. Willats, and J. P. Knox, Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7, Carbohydrate Research, vol.338, issue.17, pp.1797-1800, 2003.
DOI : 10.1016/S0008-6215(03)00272-6

URL : http://orbit.dtu.dk/en/publications/synthetic-methyl-hexagalacturonate-hapten-inhibitors-of-antihomogalacturonan-monoclonal-antibodies-lm7-jim5-and-jim7(7c75172c-54be-4707-86bc-cf073f04f44f).html

Y. Verhertbruggen, S. E. Marcus, A. Haeger, J. J. Ordaz-ortiz, and J. P. Knox, An extended set of monoclonal antibodies to pectic homogalacturonan, Carbohydrate Research, vol.344, issue.14, pp.1858-1862, 2009.
DOI : 10.1016/j.carres.2008.11.010

L. Jones, G. B. Seymour, and J. P. Knox, Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan, Plant Physiology, vol.113, issue.4, pp.1405-1412, 1997.
DOI : 10.1104/pp.113.4.1405

URL : http://www.plantphysiol.org/content/plantphysiol/113/4/1405.full.pdf

W. G. Willats, S. E. Marcus, and J. Knox, Generation of a monoclonal antibody specific to (1???5)-??-l-arabinan, Carbohydrate Research, vol.308, issue.1-2, pp.149-152, 1998.
DOI : 10.1016/S0008-6215(98)00070-6

I. Moller, S. E. Marcus, A. Haeger, Y. Verhertbruggen, R. Verhoef et al., High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchial clustering of their carbohydrate microarray binding profiles, Glycoconj. J, vol.25, pp.49-58, 2008.
DOI : 10.1007/s10719-007-9059-7

URL : https://link.springer.com/content/pdf/10.1007%2Fs10719-007-9059-7.pdf

P. J. Meikle, I. Bonig, N. J. Hoogenraad, A. E. Clarke, and B. A. Stone, The location of (1?3)-beta- glucans in the walls of pollen tubes of Nicotiana alata using a (1?3)-beta-glucan-specific monoclonal antibody, Planta, vol.185, pp.1-8, 1991.

T. Matoh, M. Takasaki, K. Takabe, and M. Kobayashi, Immunocytochemistry of Rhamnogalacturonan II in Cell Walls of Higher Plants, Plant and Cell Physiology, vol.39, issue.5, pp.483-491, 1998.
DOI : 10.1093/oxfordjournals.pcp.a029395

URL : https://academic.oup.com/pcp/article-pdf/39/5/483/5235066/39-5-483.pdf

S. A. Johnson-brousseau and S. Mccormick, pollen mutants and gametophytically- expressed genes, The Plant Journal, vol.126, issue.5, pp.761-775, 2004.
DOI : 10.3109/10520295909114663

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2004.02147.x/pdf

C. M. Rounds, E. Lubeck, P. K. Hepler, and L. J. Winship, to Label Pectin in Pollen Tubes and Arabidopsis Root Hairs, Plant Physiology, vol.157, issue.1, pp.175-187, 2011.
DOI : 10.1104/pp.111.182196

URL : http://www.plantphysiol.org/content/plantphysiol/157/1/175.full.pdf

A. W. Blake, L. Mccartney, J. E. Flint, D. N. Bolam, A. B. Boraston et al., Understanding the Biological Rationale for the Diversity of Cellulose-directed Carbohydrate-binding Modules in Prokaryotic Enzymes, Journal of Biological Chemistry, vol.4, issue.39, pp.29321-29329, 2006.
DOI : 10.1021/bi000607s

G. Y. Jauh and E. M. Lord, Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta, vol.199, issue.2, pp.251-261, 1996.
DOI : 10.1007/BF00196566

J. C. Mollet, S. Kim, G. Y. Jauh, and E. M. Lord, Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside, Protoplasma, vol.219, issue.1-2, pp.89-98, 2002.
DOI : 10.1007/s007090200009

A. L. Rubinstein, J. Má-rque, M. S. Cervera, and P. A. Bedinger, Extensin-like Glycoproteins in the Maize Pollen Tube Wall, THE PLANT CELL ONLINE, vol.7, issue.12, pp.2211-2225, 1995.
DOI : 10.1105/tpc.7.12.2211

URL : http://www.plantcell.org/content/7/12/2211.full.pdf

T. Chen, N. J. Teng, X. Q. Wu, Y. H. Wang, W. Tang et al., Disruption of Actin Filaments by Latrunculin B Affects Cell Wall Construction in Picea meyeri Pollen Tube by Disturbing Vesicle Trafficking, Plant and Cell Physiology, vol.41, issue.1, pp.19-30, 2007.
DOI : 10.1080/00173130260045468

URL : https://academic.oup.com/pcp/article-pdf/48/1/19/17109797/pcl036.pdf

D. D. Fernando, C. R. Quinn, E. Brenner, and J. N. Owens, Male gametophyte development and evolution in Gymnosperms, Int. J. Plant Dev. Biol, vol.4, pp.47-63, 2010.

E. Parre and A. Geitmann, More Than a Leak Sealant. The Mechanical Properties of Callose in Pollen Tubes, PLANT PHYSIOLOGY, vol.137, issue.1, pp.274-286, 2005.
DOI : 10.1104/pp.104.050773

J. Derksen, G. Janssen, I. Lichtscheidl, W. Adlassnig, M. Ovecka et al., Wall architecture with high porosity is established at the tip and maintained in growing pollen tubes of Nicotiana tabacum, The Plant Journal, vol.14, issue.3, pp.495-506
DOI : 10.1016/j.tplants.2009.03.008

J. M. Abercrombie, B. C. O-'meara, A. R. Moffatt, and J. H. Williams, Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns, EvoDevo, vol.2, issue.1, p.14, 2011.
DOI : 10.1080/10635150802429642

URL : https://evodevojournal.biomedcentral.com/track/pdf/10.1186/2041-9139-2-14?site=evodevojournal.biomedcentral.com

M. D. Lazzaro, J. M. Donohue, and F. M. Soodavar, Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes, Protoplasma, vol.220, issue.3-4, pp.201-207, 2003.
DOI : 10.1007/s00709-002-0042-7

K. H. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohydrate Research, vol.344, issue.14, pp.1879-1900, 2009.
DOI : 10.1016/j.carres.2009.05.021

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends in Plant Science, vol.6, issue.9, pp.414-419, 2001.
DOI : 10.1016/S1360-1385(01)02045-3

M. Stepka, F. Ciampolini, M. Charzynska, and M. Cresti, Localization of pectins in the pollen tube wall of Ornithogalum virens L. Does the pattern of pectin distribution depend on the growth rate of the pollen tube?, Planta, vol.210, issue.4, pp.630-635, 2000.
DOI : 10.1007/s004250050053

Y. Q. Li, F. Chen, H. F. Linskens, and M. Cresti, Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants, Sexual Plant Reproduction, vol.7, issue.3, pp.145-152, 1994.
DOI : 10.1007/BF00228487

K. M. Chen, G. L. Wu, Y. H. Wang, C. T. Tian, J. Samaj et al., The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components, Protoplasma, vol.15, issue.1-2, pp.39-49, 2008.
DOI : 10.1093/treephys/23.5.345

W. G. Willats, C. Orfila, G. Limberg, H. C. Buchholt, G. Van-alebeek et al., Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls, Journal of Biological Chemistry, vol.181, issue.22, pp.19404-19413, 2001.
DOI : 10.1006/anbo.1999.0914

P. Fayant, O. Girlanda, Y. Chebli, C. Aubin, I. Villemure et al., Finite Element Model of Polar Growth in Pollen Tubes, The Plant Cell, vol.22, issue.8, pp.2579-2593, 2010.
DOI : 10.1105/tpc.110.075754

URL : http://www.plantcell.org/content/plantcell/22/8/2579.full.pdf

A. Angiosperm-phylogeny and . Group, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III, Botanical Journal of the Linnean Society, vol.47, issue.2, pp.105-121, 2009.
DOI : 10.1111/j.1095-8339.2009.00996.x

S. C. Fry, Cell wall polysaccharide composition and covalent crosslinking, Annu. Plant Rev, vol.41, pp.1-42, 2011.
DOI : 10.1002/9781444391015.ch1

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Hemicelluloses, Annual Review of Plant Biology, vol.61, issue.1, pp.263-289, 2010.
DOI : 10.1146/annurev-arplant-042809-112315

D. J. Cosgrove, ENZYMES AND OTHER AGENTS THAT ENHANCE CELL WALL EXTENSIBILITY, Annual Review of Plant Physiology and Plant Molecular Biology, vol.50, issue.1, pp.391-417, 1999.
DOI : 10.1146/annurev.arplant.50.1.391

G. Freshour, C. P. Bonin, W. D. Reiter, P. Albersheim, A. G. Darvill et al., Distribution of Fucose-Containing Xyloglucans in Cell Walls of the mur1 Mutant of Arabidopsis, PLANT PHYSIOLOGY, vol.131, issue.4, pp.1602-1612, 2003.
DOI : 10.1104/pp.102.016444

J. H. Williams, Novelties of the flowering plant pollen tube underlie diversification of a key life history stage, Proc. Natl. Acad. Sci, pp.11259-11263, 2008.
DOI : 10.1046/j.1525-142x.2001.003002059.x

S. T. Laughlin and C. R. Bertozzi, Imaging the glycome, Proc. Natl. Acad. Sci, pp.12-17, 2009.
DOI : 10.1002/aja.1002030302

URL : http://www.pnas.org/content/106/1/12.full.pdf

C. T. Anderson and I. S. Wallace, Illuminating the wall, Plant Signaling & Behavior, vol.7, issue.6, pp.661-663, 2012.
DOI : 10.1021/ac051207j

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442861

C. T. Anderson, I. S. Wallace, and C. R. Somerville, Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls, Proc. Natl. Acad. Sci. USA 2012, pp.1329-1334
DOI : 10.1021/ja106553e

URL : http://www.pnas.org/content/109/4/1329.full.pdf

A. L. Rae, P. J. Harris, A. Bacic, and A. Clarke, Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes, Planta, vol.1, issue.1, pp.128-133, 1985.
DOI : 10.1007/BF00397395

N. Nakamura and H. Suzuki, Sugar composition of pollen grain and pollen tube cell walls, Phytochemistry, vol.20, issue.5, pp.981-984, 1981.
DOI : 10.1016/0031-9422(81)83012-9

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucanderived oligosaccharides, Pé rez Lorences, pp.1-3, 1993.
DOI : 10.1034/j.1399-3054.1993.890101.x

D. M. Cavalier, O. Lerouxel, L. Neumetzler, K. Yamauchi, A. Reinecke et al., Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component, THE PLANT CELL ONLINE, vol.20, issue.6, pp.1519-1537, 2008.
DOI : 10.1105/tpc.108.059873

URL : https://hal.archives-ouvertes.fr/hal-00352498

M. Günl, F. Kraemer, and M. Pauly, Oligosaccharide Mass Profiling (OLIMP) of Cell Wall Polysaccharides by MALDI-TOF/MS, The Plant Cell Wall: Methods and Protocols, pp.43-54, 2011.
DOI : 10.1007/978-1-61779-008-9_3

O. Lerouxel, T. S. Choo, M. Seveno, B. Usadel, L. Faye et al., Rapid Structural Phenotyping of Plant Cell Wall Mutants by Enzymatic Oligosaccharide Fingerprinting, PLANT PHYSIOLOGY, vol.130, issue.4, pp.1754-1763, 2002.
DOI : 10.1104/pp.011965

URL : http://www.plantphysiol.org/content/plantphysiol/130/4/1754.full.pdf

M. Sekkal, J. Huvenne, P. Legrand, B. Sombret, J. Mollet et al., Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar inGracilaria verrucosa sections, Mikrochimica Acta, vol.204, issue.205, pp.1-10, 1993.
DOI : 10.1007/BF01243315

L. Chen, N. C. Carpita, W. D. Reiter, R. H. Wilson, C. Jeffries et al., A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra, The Plant Journal, vol.106, issue.3, pp.385-392, 1998.
DOI : 10.1104/pp.107.4.1129

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.1998.00301.x/pdf

G. Mouille, S. Robin, M. Lecomte, S. Pagant, and H. Höfte, cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy, The Plant Journal, vol.12, issue.3, pp.393-404, 2003.
DOI : 10.1105/tpc.010278

Q. Wang, L. Lu, X. Wu, Y. Li, and J. Lin, Boron influences pollen germination and pollen tube growth in Picea meyeri, Tree Physiology, vol.23, issue.5, pp.345-351, 2003.
DOI : 10.1093/treephys/23.5.345

URL : https://academic.oup.com/treephys/article-pdf/23/5/345/4665753/23-5-345.pdf

Q. L. Wang, L. A. Kong, H. Q. Hao, X. H. Wang, J. X. Lin et al., Effects of Brefeldin A on Pollen Germination and Tube Growth. Antagonistic Effects on Endocytosis and Secretion, PLANT PHYSIOLOGY, vol.139, issue.4, pp.1692-1703, 2005.
DOI : 10.1104/pp.105.069765

URL : http://www.plantphysiol.org/content/plantphysiol/139/4/1692.full.pdf

Y. Wang, T. Chen, C. Zhang, H. Hao, P. Liu et al., pollen tubes, New Phytologist, vol.123, issue.4, pp.851-862, 2009.
DOI : 10.1104/pp.123.2.645

D. Mohnen, Pectin structure and biosynthesis, Current Opinion in Plant Biology, vol.11, issue.3, pp.266-277, 2008.
DOI : 10.1016/j.pbi.2008.03.006

A. Driouich, M. L. Follet-gueye, S. Bernard, S. Kousar, L. Chevalier et al., Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants, Frontiers in Plant Science, vol.3
DOI : 10.3389/fpls.2012.00079

URL : https://hal.archives-ouvertes.fr/hal-00720301

K. Akita, T. Ishimizu, T. Tsukamoto, T. Ando, and S. Hase, Successive Glycosyltransfer Activity and Enzymatic Characterization of Pectic Polygalacturonate 4-alpha -Galacturonosyltransferase Solubilized from Pollen Tubes of Petunia axillaris Using Pyridylaminated Oligogalacturonates as Substrates, PLANT PHYSIOLOGY, vol.130, issue.1, pp.374-379, 2002.
DOI : 10.1104/pp.005587

URL : http://www.plantphysiol.org/content/plantphysiol/130/1/374.full.pdf

K. H. Caffall, S. Pattathil, S. Phillips, M. G. Hahn, and D. Mohnen, Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa, Molecular Plant, vol.2, issue.5, pp.1000-1014, 2009.
DOI : 10.1093/mp/ssp062

Y. Kong, G. Zhou, Y. Yin, Y. Xu, S. Pattathil et al., Molecular Analysis of a Family of Arabidopsis Genes Related to Galacturonosyltransferases, PLANT PHYSIOLOGY, vol.155, issue.4, pp.1791-1805, 2011.
DOI : 10.1104/pp.110.163220

J. D. Sterling, M. A. Atmodjo, S. E. Inwood, V. S. Kumar-kolli, H. F. Quigley et al., Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase, Proc. Natl. Acad. Sci, pp.5236-5241, 2006.
DOI : 10.1073/pnas.0503392102

URL : http://www.pnas.org/content/103/13/5236.full.pdf

S. Bouton, E. Leboeuf, G. Mouille, M. T. Leydecker, J. Talbotec et al., QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis, THE PLANT CELL ONLINE, vol.14, issue.10, pp.2577-2590, 2002.
DOI : 10.1105/tpc.004259

URL : http://www.plantcell.org/content/plantcell/14/10/2577.full.pdf

Y. Qin, A. R. Leydon, A. Manziello, R. Pandey, D. Mount et al., Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil, PLoS Genetics, vol.34, issue.8, p.1000621, 2009.
DOI : 10.1371/journal.pgen.1000621.s022

J. K. Jensen, S. O. Sørensen, J. Harholt, N. Geshi, Y. Sakuragi et al., Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.5, pp.1289-1302, 2008.
DOI : 10.1105/tpc.107.050906

J. Harholt, A. Suttangkakul, and H. Scheller, Biosynthesis of Pectin, PLANT PHYSIOLOGY, vol.153, issue.2, pp.384-395, 2010.
DOI : 10.1104/pp.110.156588

T. Ishii, A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose, Glycobiology, vol.17, pp.345-354, 2007.

G. Drakakaki, O. Zabotina, I. Delgado, S. Robert, K. Keegstra et al., Arabidopsis Reversibly Glycosylated Polypeptides 1 and 2 Are Essential for Pollen Development, PLANT PHYSIOLOGY, vol.142, issue.4, pp.1480-1492, 2006.
DOI : 10.1104/pp.106.086363

URL : http://www.plantphysiol.org/content/plantphysiol/142/4/1480.full.pdf

H. Iwai, A. Hokura, M. Oishi, H. Chida, T. Ishii et al., The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization, Proc. Natl. Acad. Sci, pp.16592-16597, 2006.
DOI : 10.1016/j.gca.2005.06.014

A. M. Wu, C. Rihouey, M. Seveno, E. Hörnblad, S. Singh et al., The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation, The Plant Journal, vol.17, issue.4, pp.718-731, 2009.
DOI : 10.1111/j.1365-313X.2008.03724.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03724.x/pdf

D. M. Brown, Z. Zhang, E. Stephens, P. Dupree, and S. R. Turner, Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis, The Plant Journal, vol.136, issue.4, pp.732-746, 2009.
DOI : 10.1111/j.1365-313X.2008.03729.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03729.x/pdf

F. Delmas, M. Sé-veno, J. G. Northey, M. Hernould, P. Lerouge et al., The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation, Journal of Experimental Botany, vol.138, issue.Pt 1, pp.2639-2647, 2008.
DOI : 10.1042/BJ20040207

X. L. Liu, L. Liu, Q. K. Niu, C. Xia, K. Z. Yang et al., Ye, D. Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis, pp.647-660

Y. Deng, W. Wang, W. Q. Li, C. Xia, H. Z. Liao et al., encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis, J. Integr. Plant Biol, vol.2, issue.52, pp.829-843, 2010.
DOI : 10.1111/j.1744-7909.2010.00963.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2010.00963.x/pdf

M. Kobayashi, N. Kouzu, A. Inami, K. Toyooka, Y. Konishi et al., Characterization of Arabidopsis CTP:3-Deoxy-d-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the Enzyme that Activates KDO During Rhamnogalacturonan II Biosynthesis, Plant and Cell Physiology, vol.41, issue.10, pp.1832-1843, 2011.
DOI : 10.1111/j.1365-313X.2004.02279.x

URL : https://academic.oup.com/pcp/article-pdf/52/10/1832/17114181/pcr120.pdf

F. Goubet and D. Mohnen, Solubilization and Partial Characterization of Homogalacturonan-Methyltransferase from Microsomal Membranes of Suspension-Cultured Tobacco Cells, Plant Physiology, vol.121, issue.1, pp.281-290, 1999.
DOI : 10.1104/pp.121.1.281

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59378/pdf

M. Pauly and H. V. Scheller, O -Acetylation of plant cell wall polysaccharides: identification and partial characterization of a rhamnogalacturonan O -acetyl-transferase from potato suspension-cultured cells, Planta, vol.210, issue.4, pp.659-667, 2000.
DOI : 10.1007/s004250050057

G. Mouille, M. C. Ralet, C. Cavelier, C. Eland, D. Effroy et al., Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain, The Plant Journal, vol.136, issue.4, pp.605-614, 2007.
DOI : 10.1042/bj0980159

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03086.x/pdf

Y. Miao, H. Y. Li, J. Shen, J. Wang, and L. Jiang, QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells, Journal of Experimental Botany, vol.118, issue.14, pp.5063-5078, 2011.
DOI : 10.1016/0076-6879(86)18062-1

URL : https://academic.oup.com/jxb/article-pdf/62/14/5063/16929748/err211.pdf

Y. Manabe, M. Nafisi, Y. Verhertbruggen, C. Orfila, S. Gille et al., Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea, PLANT PHYSIOLOGY, vol.155, issue.3, pp.1068-1078, 2011.
DOI : 10.1104/pp.110.168989

O. A. Zabotina, Xyloglucan and Its Biosynthesis, Frontiers in Plant Science, vol.3, issue.3
DOI : 10.3389/fpls.2012.00134

URL : http://journal.frontiersin.org/article/10.3389/fpls.2012.00134/pdf

J. C. Cocuron, O. Lerouxel, G. Drakakaki, A. P. Alonso, A. H. Liepman et al., A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase, Proc. Natl. Acad. Sci, pp.8550-8555, 2007.
DOI : 10.1073/pnas.0703133104

URL : http://www.pnas.org/content/104/20/8550.full.pdf

D. M. Cavalier and K. Keegstra, Two Xyloglucan Xylosyltransferases Catalyze the Addition of Multiple Xylosyl Residues to Cellohexaose, Journal of Biological Chemistry, vol.187, issue.45, pp.34197-34207, 2006.
DOI : 10.1021/ja9936520

URL : http://www.jbc.org/content/281/45/34197.full.pdf

S. Vuttipongchaikij, D. Brocklehurst, C. Steele-king, D. A. Ashford, L. D. Gomez et al., Arabidopsis GT34 family contains five xyloglucan ??-1,6-xylosyltransferases, New Phytologist, vol.56, issue.3, pp.585-595, 2012.
DOI : 10.1111/j.1365-313X.2008.03580.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04196.x/pdf

M. Madson, C. Dunand, X. Li, R. Verma, G. F. Vanzin et al., The MUR3 Gene of Arabidopsis Encodes a Xyloglucan Galactosyltransferase That Is Evolutionarily Related to Animal Exostosins, THE PLANT CELL ONLINE, vol.15, issue.7, pp.1662-1670, 2003.
DOI : 10.1105/tpc.009837

J. K. Jensen, A. Schultink, K. Keegstra, C. G. Wilkerson, and M. Pauly, RNA-Seq Analysis of Developing Nasturtium Seeds (Tropaeolum majus): Identification and Characterization of an Additional Galactosyltransferase Involved in Xyloglucan Biosynthesis, Molecular Plant, vol.5, issue.5, pp.984-992, 2012.
DOI : 10.1093/mp/sss032

R. M. Perrin, A. E. Derocher, M. Bar-peled, W. Zeng, L. Norambuena et al., Xyloglucan Fucosyltransferase, an Enzyme Involved in Plant Cell Wall Biosynthesis, Science, vol.284, issue.5422, pp.1976-1979, 1999.
DOI : 10.1126/science.284.5422.1976

G. F. Vanzin, M. Madson, N. C. Carpita, N. V. Raikhel, K. Keegstra et al., The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1, Proc. Natl. Acad. Sci. USA 2002, pp.3340-3345
DOI : 10.1126/science.1062319

G. Guerriero, J. Fugelstad, and V. Bulone, What Do We Really Know about Cellulose Biosynthesis in Higher Plants?, Journal of Integrative Plant Biology, vol.87, issue.2, pp.161-175, 2010.
DOI : 10.1128/jb.177.6.1419-1424.1995

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2010.00935.x/pdf

T. Richmond, Higher plant cellulose synthases, Genome Biol, vol.1, pp.3001-3002, 2000.

M. S. Doblin, I. Kurek, D. Jacob-wilk, and D. P. Delmer, Cellulose Biosynthesis in Plants: from Genes to Rosettes, Plant and Cell Physiology, vol.43, issue.12, pp.1407-1420, 2002.
DOI : 10.1046/j.1365-2958.2001.02337.x

URL : https://academic.oup.com/pcp/article-pdf/43/12/1407/5401780/pcf164.pdf

T. A. Richmond and C. R. Somerville, Integrative approaches to determining Csl function, Plant Mol. Biol, vol.47, pp.131-143, 2001.
DOI : 10.1007/978-94-010-0668-2_8

A. J. Bernal, C. M. Yoo, M. Mutwil, J. K. Jensen, G. Hou et al., Functional Analysis of the Cellulose Synthase-Like Genes CSLD1, CSLD2, and CSLD4 in Tip-Growing Arabidopsis Cells, PLANT PHYSIOLOGY, vol.148, issue.3, pp.1238-1253, 2008.
DOI : 10.1104/pp.108.121939

L. Wang, K. Guo, Y. Li, Y. Tu, H. Hu et al., Expression profiling and integrative analysis of the CESA/CSL superfamily in rice, BMC Plant Biology, vol.10, issue.1, p.282, 2010.
DOI : 10.1186/1471-2229-10-282

URL : https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/1471-2229-10-282?site=bmcplantbiol.biomedcentral.com

M. S. Doblin, L. De-melis, E. Newbigin, A. Bacic, and S. M. Read, Pollen Tubes of Nicotiana alata Express Two Genes from Different beta-Glucan Synthase Families, PLANT PHYSIOLOGY, vol.125, issue.4, pp.2040-2052, 2001.
DOI : 10.1104/pp.125.4.2040

URL : http://www.plantphysiol.org/content/plantphysiol/125/4/2040.full.pdf

G. Cai, C. Faleri, C. Del-casino, A. M. Emons, and M. Cresti, Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules, PLANT PHYSIOLOGY, vol.155, issue.3, pp.1169-1190, 2011.
DOI : 10.1104/pp.110.171371

W. Wang, L. Wang, C. Chen, G. Xiong, and X. Tan, Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes, Journal of Experimental Botany, vol.126, issue.14, pp.5161-5177, 2011.
DOI : 10.1186/1471-2229-9-99

URL : https://academic.oup.com/jxb/article-pdf/62/14/5161/16930252/err221.pdf

S. Persson, A. Paredez, A. Carroll, H. Palsdottir, M. Doblin et al., Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis, Proc. Natl. Acad. Sci, pp.15566-15571, 2007.
DOI : 10.1016/0003-2697(73)90377-1

URL : http://www.pnas.org/content/104/39/15566.full.pdf

L. C. Boavida, B. Shuai, H. J. Yu, G. C. Pagnussat, V. Sundaresan et al., A Collection of Ds Insertional Mutants Associated With Defects in Male Gametophyte Development and Function in Arabidopsis thaliana, Genetics, vol.181, issue.4, pp.1369-1385, 2009.
DOI : 10.1534/genetics.108.090852

D. P. Verma and Z. Hong, Plant callose synthase complexes, Plant Molecular Biology, vol.47, issue.6, pp.693-701, 2001.
DOI : 10.1023/A:1013679111111

S. Nishikawa, G. M. Zinkl, R. J. Swanson, D. Maruyama, and D. Preuss, Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth, BMC Plant Biol, vol.5, p.15, 2005.

X. Dong, Z. Hong, M. Sivaramakrishnan, M. Mahfouz, and D. P. Verma, Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis, The Plant Journal, vol.126, issue.3, pp.315-328, 2005.
DOI : 10.1128/jb.177.6.1419-1424.1995

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2005.02379.x/pdf

L. Brownfield, K. Ford, M. S. Doblin, E. Newbigin, S. Read et al., Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene, The Plant Journal, vol.47, issue.1, pp.147-156, 2007.
DOI : 10.1104/pp.105.2.659

L. Brownfield, S. Wilson, E. Newbigin, A. Bacic, and S. Read, pollen tubes, Biochemical Journal, vol.414, issue.1, pp.43-52, 2008.
DOI : 10.1042/BJ20080693

E. Pacini, G. G. Franchi, and M. Ripaccioli, Ripe pollen structure and histochemistry of some gymnosperms, Plant Systematics and Evolution, vol.49, issue.Suppl.1, pp.81-99, 1999.
DOI : 10.1007/978-1-4612-2958-2_8

S. Mcqueen-mason, D. M. Durachko, and D. J. Cosgrove, Two Endogenous Proteins That Induce Cell Wall Extension in Plants, THE PLANT CELL ONLINE, vol.4, issue.11, pp.1425-1433, 1992.
DOI : 10.1105/tpc.4.11.1425

Z. Li, D. M. Durachko, and D. J. Cosgrove, An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls, Planta, vol.191, issue.3, pp.349-356, 1993.
DOI : 10.1007/BF00195692

J. Sampedro and D. J. Cosgrove, The expansin superfamily, Genome Biol, vol.6, pp.1-11, 2005.

S. Mcqueen-mason and D. J. Cosgrove, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension., Proc. Natl. Acad. Sci, pp.6574-6578, 1994.
DOI : 10.1073/pnas.91.14.6574

S. Mcqueen-mason and D. J. Cosgrove, Expansin Mode of Action on Cell Walls (Analysis of Wall Hydrolysis, Stress Relaxation, and Binding), Plant Physiology, vol.107, issue.1, pp.87-100, 1995.
DOI : 10.1104/pp.107.1.87

E. I. Sharova, Expansins: Proteins involved in cell wall softening during plant growth and morphogenesis, Russian Journal of Plant Physiology, vol.228, issue.6, pp.713-727, 2007.
DOI : 10.1093/oxfordjournals.pcp.a029578

S. Dai, L. Li, T. Chen, K. Chong, Y. Xue et al., Proteomic analyses ofOryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth, PROTEOMICS, vol.16, issue.8, pp.2504-2529, 2006.
DOI : 10.1146/annurev.arplant.54.031902.134934

L. C. Li, P. A. Bedinger, C. Volk, A. D. Jones, and D. J. Cosgrove, Purification and Characterization of Four ??-Expansins (Zea m 1 Isoforms) from Maize Pollen, PLANT PHYSIOLOGY, vol.132, issue.4, pp.2073-2085, 2003.
DOI : 10.1104/pp.103.020024

URL : http://www.plantphysiol.org/content/plantphysiol/132/4/2073.full.pdf

Y. Jin, A. S. Tashpulatov, H. Katholnigg, E. Heberle-bors, and A. Touraev, Isolation and characterisation of two wheat ??-expansin genes expressed during male gametophyte development, Protoplasma, vol.126, issue.1-3, pp.13-19, 2006.
DOI : 10.3109/10520298709108014

M. A. Zaidi, S. Leary, S. Wu, S. C. Gleddie, F. Eudes et al., A molecular and proteomic investigation of proteins rapidly released from triticale pollen upon hydration, Plant Molecular Biology, vol.51, issue.1-2, pp.101-121, 2012.
DOI : 10.1111/j.1744-7909.2009.00823.x

D. J. Cosgrove, P. Bedinger, and D. M. Durachko, Group I allergens of grass pollen as cell wall-loosening agents, Proc. Natl. Acad. Sci, pp.6559-6564, 1997.
DOI : 10.1007/BF00028877

URL : http://www.pnas.org/content/94/12/6559.full.pdf

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson et al., An ???Electronic Fluorescent Pictograph??? Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS ONE, vol.39, issue.8, p.718, 2007.
DOI : 10.1371/journal.pone.0000718.g009

URL : https://doi.org/10.1371/journal.pone.0000718

M. Magrane, UniProt Consortium UniProt Knowledgebase: A hub of integrated protein data, Database, 2011.
DOI : 10.1093/database/bar009

URL : https://academic.oup.com/database/article-pdf/doi/10.1093/database/bar009/1257039/bar009.pdf

H. Hende, K. J. Bradford, D. A. Brummel, H. T. Cho, D. J. Cosgrove et al., Nomenclature for members of the expansin superfamily of genes and proteins, Plant Mol. Biol, vol.55, pp.311-314, 2004.

R. Swanson, T. Clark, and D. Preuss, Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes, Sexual Plant Reproduction, vol.32, issue.4, pp.163-171, 2005.
DOI : 10.1007/s00497-005-0009-x

J. K. Rose, J. Braam, S. C. Fry, and K. Nishitani, The XTH Family of Enzymes Involved in Xyloglucan Endotransglucosylation and Endohydrolysis: Current Perspectives and a New Unifying Nomenclature, Plant and Cell Physiology, vol.43, issue.12, pp.1421-1435, 2002.
DOI : 10.1104/pp.104.1.161

S. C. Fry, R. C. Smith, K. F. Renwick, D. J. Martin, S. K. Hodge et al., Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants, Biochemical Journal, vol.282, issue.3, pp.821-828, 1992.
DOI : 10.1042/bj2820821

URL : http://www.biochemj.org/content/ppbiochemj/282/3/821.full.pdf

K. Nishitani and R. Tominaga, Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule, J. Biol. Chem, vol.267, pp.21058-21064, 1992.

R. Yokoyama and K. Nishitani, A Comprehensive Expression Analysis of all Members of a Gene Family Encoding Cell-Wall Enzymes Allowed us to Predict cis-Regulatory Regions Involved in Cell-Wall Construction in Specific Organs of Arabidopsis, Plant and Cell Physiology, vol.42, issue.10, pp.1025-1033, 2001.
DOI : 10.1093/pcp/pce034

R. Yokoyama, J. K. Rose, and K. Nishitani, A Surprising Diversity and Abundance of Xyloglucan Endotransglucosylase/Hydrolases in Rice. Classification and Expression Analysis, PLANT PHYSIOLOGY, vol.134, issue.3, pp.1088-1099, 2004.
DOI : 10.1104/pp.103.035261

URL : http://www.plantphysiol.org/content/plantphysiol/134/3/1088.full.pdf

J. Becnel, M. Natarajan, A. Kipp, and J. Braam, Developmental Expression Patterns of Arabidopsis XTH Genes Reported by Transgenes and Genevestigator, Plant Molecular Biology, vol.136, issue.3, pp.61-451, 2006.
DOI : 10.1042/bj3550671

K. Kurasawa, A. Matsui, R. Yokoyama, T. Kuriyama, T. Yoshizumi et al., The AtXTH28 Gene, a Xyloglucan Endotransglucosylase/Hydrolase, is Involved in Automatic Self-Pollination in Arabidopsis thaliana, Plant and Cell Physiology, vol.15, issue.1, pp.413-422, 2009.
DOI : 10.1105/tpc.006353

G. F. Zhang and L. A. Staehelin, Functional Compartmentation of the Golgi Apparatus of Plant Cells : Immunocytochemical Analysis of High-Pressure Frozen- and Freeze-Substituted Sycamore Maple Suspension Culture Cells, PLANT PHYSIOLOGY, vol.99, issue.3, pp.1070-1083, 1992.
DOI : 10.1104/pp.99.3.1070

J. Gaffe, D. M. Tieman, and A. K. Handa, Pectin Methylesterase Isoforms in Tomato (Lycopersicon esculentum) Tissues (Effects of Expression of a Pectin Methylesterase Antisense Gene), Plant Physiology, vol.105, issue.1, pp.199-203, 1994.
DOI : 10.1104/pp.105.1.199

S. Y. Rhee and C. R. Somerville, Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall, The Plant Journal, vol.140, issue.1, pp.79-88, 1998.
DOI : 10.1104/pp.107.4.1129

S. Y. Rhee, E. Osborne, P. D. Poindexter, and C. R. Somerville, Microspore Separation in the quartet 3 Mutants of Arabidopsis Is Impaired by a Defect in a Developmentally Regulated Polygalacturonase Required for Pollen Mother Cell Wall Degradation, PLANT PHYSIOLOGY, vol.133, issue.3, pp.1170-1180, 2003.
DOI : 10.1104/pp.103.028266

K. E. Francis, S. Y. Lam, and G. P. Copenhaver, Separation of Arabidopsis Pollen Tetrads Is Regulated by QUARTET1, a Pectin Methylesterase Gene, PLANT PHYSIOLOGY, vol.142, issue.3, pp.1004-1013, 2006.
DOI : 10.1104/pp.106.085274

URL : http://www.plantphysiol.org/content/plantphysiol/142/3/1004.full.pdf

S. Wolf, G. Mouille, and J. Pelloux, Homogalacturonan Methyl-Esterification and Plant Development, Molecular Plant, vol.2, issue.5, pp.851-860, 2009.
DOI : 10.1093/mp/ssp066

URL : https://doi.org/10.1093/mp/ssp066

Y. Zhu, P. Zhao, X. Wu, W. Wang, M. Scali et al., Proteomic identification of differentially expressed proteins in mature and germinated maize pollen, Acta Physiologiae Plantarum, vol.51, issue.4, pp.1467-1474, 2011.
DOI : 10.1111/j.1744-7909.2009.00823.x

W. Ge, Y. Song, C. Zhang, Y. Zhang, A. L. Burlingame et al., Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.12, pp.1964-1973, 2011.
DOI : 10.1016/j.bbapap.2011.07.013

URL : http://europepmc.org/articles/pmc3214693?pdf=render

Y. Q. Li, A. Mareck, C. Faleri, A. Moscatelli, Q. Liu et al., Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L., Planta, vol.214, issue.5, pp.734-740, 2002.
DOI : 10.1007/s004250100664

L. Jiang, S. L. Yang, L. F. Xie, C. S. Puah, X. Q. Zhang et al., VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract, THE PLANT CELL ONLINE, vol.17, issue.2, pp.584-596, 2005.
DOI : 10.1105/tpc.104.027631

URL : http://www.plantcell.org/content/plantcell/17/2/584.full.pdf

G. W. Tian, M. H. Chen, A. Zaltsman, and V. Citovsky, Pollen-specific pectin methylesterase involved in pollen tube growth, Developmental Biology, vol.294, issue.1, pp.83-91, 2006.
DOI : 10.1016/j.ydbio.2006.02.026

URL : https://doi.org/10.1016/j.ydbio.2006.02.026

M. Bosch, A. Y. Cheung, and P. K. Hepler, Pectin Methylesterase, a Regulator of Pollen Tube Growth, PLANT PHYSIOLOGY, vol.138, issue.3, pp.1334-1346, 2005.
DOI : 10.1104/pp.105.059865

URL : http://www.plantphysiol.org/content/plantphysiol/138/3/1334.full.pdf

C. Pina, F. Pinto, J. A. Feijó, and J. D. Becker, Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth, Division Control, and Gene Expression Regulation, PLANT PHYSIOLOGY, vol.138, issue.2, pp.744-756, 2005.
DOI : 10.1104/pp.104.057935

URL : http://www.plantphysiol.org/content/plantphysiol/138/2/744.full.pdf

G. Y. Zhang, J. Feng, J. Wu, and X. W. Wang, BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth, Planta, vol.13, issue.6, pp.1323-1334, 2010.
DOI : 10.1007/s00425-010-1136-7

N. Röckel, S. Wolf, B. Kost, T. Rausch, and S. Greiner, Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins, The Plant Journal, vol.555, issue.Pt 2, pp.133-143, 2008.
DOI : 10.1042/bj2790351

E. Leboeuf, F. Guillon, S. Thoiron, and M. Lahaye, Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion, Journal of Experimental Botany, vol.56, issue.422, pp.3171-3182, 2005.
DOI : 10.1104/pp.103.022350

C. Durand, M. Vicre-gibouin, M. L. Follet-gueye, L. Duponchel, M. Moreau et al., The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1411-1421, 2009.
DOI : 10.1104/pp.109.136382

URL : https://hal.archives-ouvertes.fr/hal-00433500

J. C. Mollet, S. Y. Park, E. A. Nothnagel, and E. M. Lord, A Lily Stylar Pectin Is Necessary for Pollen Tube Adhesion to an in Vitro Stylar Matrix, THE PLANT CELL ONLINE, vol.12, issue.9, pp.1737-1749, 2000.
DOI : 10.1105/tpc.12.9.1737

URL : http://www.plantcell.org/content/plantcell/12/9/1737.full.pdf

S. Y. Park, G. Y. Jauh, J. C. Mollet, K. J. Eckard, E. A. Nothnagel et al., A Lipid Transfer-like Protein Is Necessary for Lily Pollen Tube Adhesion to an in Vitro Stylar Matrix, THE PLANT CELL ONLINE, vol.12, issue.1, pp.151-164, 2000.
DOI : 10.1105/tpc.12.1.151

C. W. Tung, K. G. Dwyer, M. E. Nasrallah, and J. Nasrallah, Genome-Wide Identification of Genes Expressed in Arabidopsis Pistils Specifically along the Path of Pollen Tube Growth, PLANT PHYSIOLOGY, vol.138, issue.2, pp.977-989, 2005.
DOI : 10.1104/pp.105.060558

J. Nieuwland, R. Feron, B. A. Huisman, A. Fasolino, C. W. Hilbers et al., Lipid Transfer Proteins Enhance Cell Wall Extension in Tobacco, THE PLANT CELL ONLINE, vol.17, issue.7, 2005.
DOI : 10.1105/tpc.105.032094

URL : http://www.plantcell.org/content/plantcell/17/7/2009.full.pdf

K. Chae, C. A. Kieslich, D. Morikis, S. C. Kim, and E. M. Lord, A Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization, The Plant Cell, vol.21, issue.12, pp.3902-3914, 2009.
DOI : 10.1105/tpc.109.070854

URL : http://www.plantcell.org/content/plantcell/21/12/3902.full.pdf

J. Y. Gou, L. M. Miller, G. Hou, X. H. Yu, X. Y. Chen et al., Acetylesterase-Mediated Deacetylation of Pectin Impairs Cell Elongation, Pollen Germination, and Plant Reproduction, The Plant Cell, vol.24, issue.1, pp.50-65, 2012.
DOI : 10.1105/tpc.111.092411

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289554

R. A. Wing, J. Yamaguchi, S. K. Larabell, V. M. Ursin, and S. Mccormick, Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia, Plant Molecular Biology, vol.14, issue.suppl 1, pp.17-28, 1989.
DOI : 10.1094/MPMI-2-017

Y. Wu, X. Qiu, S. Du, and L. Erickson, PO149, a new member of pollen pectate lyase-like gene family from alfalfa, Plant Molecular Biology, vol.14, issue.3, pp.1037-1042, 1996.
DOI : 10.1007/BF00041387

R. Kulikauskas and S. Mccormick, Identification of the tobacco and Arabidopsis homologues of the pollen-expressed LAT59 gene of tomato, Plant Molecular Biology, vol.34, issue.5, pp.809-814, 1997.
DOI : 10.1023/A:1005856531693

M. V. Marin-rodriguez, J. Orchard, and G. Seymour, Pectate lyases, cell wall degradation and fruit softening, Journal of Experimental Botany, vol.53, issue.377, pp.2115-2119, 2002.
DOI : 10.1093/jxb/erf089

URL : https://academic.oup.com/jxb/article-pdf/53/377/2115/1340587/erf089.pdf

S. G. Palusa, M. Golovkin, S. B. Shin, D. N. Richardson, and A. S. Reddy, Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis, New Phytologist, vol.5, issue.3, pp.537-550, 2007.
DOI : 10.1093/bioinformatics/17.9.847

L. Sun and S. Van-nocker, Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis, BMC Plant Biology, vol.10, issue.1, p.152, 2010.
DOI : 10.1186/1471-2229-10-152

S. Dai, T. Chen, K. Chong, Y. Xue, S. Liu et al., Pollen, Molecular & Cellular Proteomics, vol.51, issue.2, pp.207-230, 2007.
DOI : 10.1007/BF01888368

URL : https://hal.archives-ouvertes.fr/hal-01201287

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochemical Journal, vol.280, issue.2, pp.309-316, 1991.
DOI : 10.1042/bj2800309

URL : https://hal.archives-ouvertes.fr/hal-00310263

D. Campillo, E. Lewis, and L. N. , Occurrence of 9.5 Cellulase and Other Hydrolases in Flower Reproductive Organs Undergoing Major Cell Wall Disruption, PLANT PHYSIOLOGY, vol.99, issue.3, pp.1015-1020, 1992.
DOI : 10.1104/pp.99.3.1015

L. Aouar, Y. Chebli, and A. Geitmann, Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes, Sexual Plant Reproduction, vol.57, issue.1, pp.15-27, 2010.
DOI : 10.1104/pp.105.2.659

H. P. Roggen and R. G. Stanley, Cell-wall-hydrolysing enzymes in wall formation as measured by pollen-tube extension, Planta, vol.138, issue.4, pp.295-303, 1969.
DOI : 10.1111/j.1438-8677.1964.tb00150.x

H. Takeda, T. Yoshikawa, X. Z. Liu, N. Nakagawa, Y. Q. Li et al., Molecular Cloning of Two Exo-??-glucanases and Their in vivo Substrates in the Cell Walls of Lily Pollen Tubes, Plant and Cell Physiology, vol.45, issue.4, pp.436-444, 2004.
DOI : 10.1080/00173130260045468

T. Kotake, Y. Q. Li, M. Takahashi, and N. Sakurai, Characterization and function of wall-bound exo-??-glucanases of Lilium longiflorum pollen tubes, Sexual Plant Reproduction, vol.13, issue.1, pp.1-9, 2000.
DOI : 10.1007/s004970000036

P. Hruba, D. Honys, D. Twell, V. Capkova, and J. Tupy, Expression of ??-galactosidase and ??-xylosidase genes during microspore and pollen development, Planta, vol.164, issue.6, pp.931-940, 2005.
DOI : 10.1104/pp.113.2.377

R. Pressey and B. J. Reger, Polygalacturonase in pollen from corn and other grasses, Plant Science, vol.59, issue.1, pp.57-62, 1969.
DOI : 10.1016/0168-9452(89)90008-3

K. A. Hadfield and A. B. Bennett, Polygalacturonases: Many Genes in Search of a Function, Plant Physiology, vol.117, issue.2, pp.337-343, 1998.
DOI : 10.1104/pp.117.2.337

URL : http://www.plantphysiol.org/content/plantphysiol/117/2/337.full.pdf

. Arabidopsis-genome-initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, vol.300, issue.6814, pp.796-815, 2000.
DOI : 10.1038/35048692

Z. H. Gonzá-lez-carranza, K. A. Elliott, and J. A. Roberts, Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana, Journal of Experimental Botany, vol.136, issue.13, pp.3719-3730, 2007.
DOI : 10.1104/pp.104.046367

J. Kim, S. H. Shiu, S. Thoma, W. H. Li, and S. E. Patterson, Patterns of expansion and expression divergence in the plant polygalacturonase gene family, Genome Biology, vol.7, issue.9, p.87, 2007.
DOI : 10.1186/gb-2006-7-9-r87

M. Torki, P. Mandaron, R. Mache, and D. Falconet, Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana, Gene, vol.242, issue.1-2, pp.427-436, 2000.
DOI : 10.1016/S0378-1119(99)00497-7

L. Huang, Y. Ye, Y. Zhang, A. Zhang, T. Liu et al., BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation, Annals of Botany, vol.27, issue.7, pp.1339-1351, 2009.
DOI : 10.1007/s00299-008-0541-x

URL : https://academic.oup.com/aob/article-pdf/104/7/1339/16998057/mcp244.pdf

L. Huang, J. Cao, A. Zhang, Y. Ye, Y. Zhang et al., The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development, Journal of Experimental Botany, vol.165, issue.1, pp.301-313, 2009.
DOI : 10.1016/j.jplph.2007.06.020

URL : https://academic.oup.com/jxb/article-pdf/60/1/301/17130685/ern295.pdf

F. Tamari and J. S. Shore, : Is It Associated with the Degree of Self???Compatibility?, International Journal of Plant Sciences, vol.167, issue.1, pp.125-133, 2006.
DOI : 10.1086/497649

J. D. Dearnaley and G. A. Daggard, Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus, Sexual Plant Reproduction, vol.13, issue.5, pp.265-271, 2001.
DOI : 10.1007/s004970000062

M. Bosch and P. K. Hepler, Pectin Methylesterases and Pectin Dynamics in Pollen Tubes, THE PLANT CELL ONLINE, vol.17, issue.12, pp.3219-3226, 2005.
DOI : 10.1105/tpc.105.037473

URL : http://www.plantcell.org/content/plantcell/17/12/3219.full.pdf

P. M. Dey and E. Del-campillo, Biochemistry of the Multiple Forms of Glycosidases in Plants, Adv. Enzymol. Relat. Areas Mol. Biol, vol.68, pp.141-249, 1984.
DOI : 10.1042/bj1330037

Y. O. Ahn, M. Zheng, D. R. Bevan, A. Esen, S. H. Shiu et al., Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35, Phytochemistry, vol.68, issue.11, pp.1510-1520, 2007.
DOI : 10.1016/j.phytochem.2007.03.021

W. Tanthanuch, M. Chantarangsee, J. Maneesan, and J. Ketudat-cairns, Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.), BMC Plant Biology, vol.8, issue.1, p.84, 2008.
DOI : 10.1186/1471-2229-8-84

URL : https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/1471-2229-8-84?site=bmcplantbiol.biomedcentral.com

M. B. Singh and R. B. Knox, Grass Pollen Allergens: Antigenic Relationships Detected Using Monoclonal Antibodies and Dot Blotting Immunoassay, International Archives of Allergy and Immunology, vol.78, issue.3, pp.300-304, 1985.
DOI : 10.1159/000233901

A. Y. Cheung, H. Wang, and H. M. Wu, A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth, Cell, vol.82, issue.3, pp.383-393, 1995.
DOI : 10.1016/0092-8674(95)90427-1

URL : https://doi.org/10.1016/0092-8674(95)90427-1

H. M. Wu, H. Wang, and A. Cheung, A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower, Cell, vol.82, issue.3, pp.395-403, 1995.
DOI : 10.1016/0092-8674(95)90428-X

H. J. Rogers, S. L. Maund, and L. H. Johnson, A ?????galactosidase???like gene is expressed during tobacco pollen development, Journal of Experimental Botany, vol.82, issue.354, pp.67-75, 2001.
DOI : 10.1016/0092-8674(95)90428-X

URL : https://academic.oup.com/jxb/article-pdf/52/354/67/18026511/520067.pdf

M. Walker, M. Tehseen, M. S. Doblin, F. A. Pettolino, S. M. Wilson et al., The Transcriptional Regulator LEUNIG_HOMOLOG Regulates Mucilage Release from the Arabidopsis Testa, PLANT PHYSIOLOGY, vol.156, issue.1, pp.46-60, 2011.
DOI : 10.1104/pp.111.172692

URL : http://www.plantphysiol.org/content/plantphysiol/156/1/46.full.pdf

T. L. Western, J. Burn, W. L. Tan, D. J. Skinner, L. Martin-mccaffrey et al., Isolation and Characterization of Mutants Defective in Seed Coat Mucilage Secretory Cell Development in Arabidopsis, PLANT PHYSIOLOGY, vol.127, issue.3, pp.998-1011, 2001.
DOI : 10.1104/pp.010410

URL : http://www.plantphysiol.org/content/plantphysiol/127/3/998.full.pdf

J. Sampedro, B. Pardo, C. Gianzo, E. Guitian, and G. Revilla, Lack of ??-Xylosidase Activity in Arabidopsis Alters Xyloglucan Composition and Results in Growth Defects, PLANT PHYSIOLOGY, vol.154, issue.3, pp.1105-1115, 2010.
DOI : 10.1104/pp.110.163212

URL : http://www.plantphysiol.org/content/plantphysiol/154/3/1105.full.pdf

A. Lehner, F. Dardelle, O. Soret-morvan, P. Lerouge, A. Driouich et al., pollen tube and pistil, Plant Signaling & Behavior, vol.7, issue.10, pp.1282-1285, 2010.
DOI : 10.1093/jxb/erg015

URL : https://hal.archives-ouvertes.fr/hal-01805116

J. R. Anderson, W. S. Barnes, and P. Bedinger, 2,6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes, Journal of Plant Physiology, vol.159, issue.1, pp.61-67, 2002.
DOI : 10.1078/0176-1617-00651

S. E. Whitney, E. Wilson, J. Webster, A. Bacic, J. S. Reid et al., Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose, American Journal of Botany, vol.93, issue.10, pp.1402-1414, 2006.
DOI : 10.3732/ajb.93.10.1402

URL : http://www.amjbot.org/content/93/10/1402.full.pdf

M. J. Pena, P. Ryden, M. Madson, A. C. Smith, and N. C. Carpita, The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth, PLANT PHYSIOLOGY, vol.134, issue.1, pp.443-451, 2004.
DOI : 10.1104/pp.103.027508

E. Nguema-ona, C. Andeme-onzighi, S. Aboughe-angone, M. Bardor, T. Ishii et al., The reb1-1 Mutation of Arabidopsis. Effect on the Structure and Localization of Galactose-Containing Cell Wall Polysaccharides, PLANT PHYSIOLOGY, vol.140, issue.4, pp.1406-1417, 2006.
DOI : 10.1104/pp.105.074997

URL : http://www.plantphysiol.org/content/plantphysiol/140/4/1406.full.pdf

O. A. Zabotina, W. T. Van-de-ven, G. Freshour, G. Drakakaki, D. Cavalier et al., gene encodes a putative ??-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis, The Plant Journal, vol.99, issue.Suppl. 1, pp.101-115, 2008.
DOI : 10.1104/pp.110.4.1413

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03580.x/pdf

S. Gille and M. Pauly, O-Acetylation of Plant Cell Wall Polysaccharides, Frontiers in Plant Science, vol.3, issue.3
DOI : 10.3389/fpls.2012.00012

URL : http://journal.frontiersin.org/article/10.3389/fpls.2012.00012/pdf

P. J. Pena, Y. Kong, W. S. York, and M. A. Neill, A Galacturonic Acid-Containing Xyloglucan Is Involved in Arabidopsis Root Hair Tip Growth, The Plant Cell, vol.24, issue.11, pp.1-14, 2012.
DOI : 10.1105/tpc.112.103390

URL : http://www.plantcell.org/content/plantcell/24/11/4511.full.pdf

T. Wang, O. Zabotina, and M. Hong, Primary Cell Wall from Two-Dimensional Magic-Angle-Spinning Solid-State Nuclear Magnetic Resonance, Biochemistry, vol.51, issue.49, pp.9846-9856, 2012.
DOI : 10.1021/bi3015532

H. Vogler, C. Draeger, A. Weber, D. Felekis, C. Eichenberger et al., The pollen tube: a soft shell with a hard core, The Plant Journal, vol.59, issue.4
DOI : 10.1093/jxb/ern007

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.12061/pdf