E. Lord and S. Russell, The Mechanisms of Pollination and Fertilization in Plants, Annual Review of Cell and Developmental Biology, vol.18, issue.1, pp.81-105, 2002.
DOI : 10.1146/annurev.cellbio.18.012502.083438

S. Kim, J. Mollet, J. Dong, K. Zhang, S. Park et al., Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism, Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.16125-16130, 2003.
DOI : 10.1073/pnas.90.18.8332

URL : http://www.pnas.org/content/100/26/16125.full.pdf

S. Mccormick and H. Yang, Is there more than one way to attract a pollen tube?, Trends in Plant Science, vol.10, issue.6, pp.260-263, 2005.
DOI : 10.1016/j.tplants.2005.04.001

L. Boavida, A. Vieira, J. Becker, and J. Feijò, Gametophyte interaction and sexual reproduction: how plants make a zygote, The International Journal of Developmental Biology, vol.49, issue.5-6, pp.615-632, 2005.
DOI : 10.1387/ijdb.052023lb

URL : http://www.ijdb.ehu.es/web/descarga/paper/052023lb

J. Mollet, C. Faugeron, and H. Morvan, Cell adhesion, separation and guidance in compatible plant reproduction, Annu Plant Rev, vol.25, pp.69-90, 2007.
DOI : 10.1002/9780470988824.ch4

URL : https://hal.archives-ouvertes.fr/hal-00698519

S. Okuda, H. Tsutsui, K. Shiina, S. Sprunck, H. Takeuchi et al., Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells, Nature, vol.17, issue.7236, pp.357-361, 2009.
DOI : 10.1038/nature07882

F. Dardelle, A. Lehner, Y. Ramdani, M. Bardor, P. Lerouge et al., Biochemical and Immunocytological Characterizations of Arabidopsis Pollen Tube Cell Wall, PLANT PHYSIOLOGY, vol.153, issue.4, pp.10-1104110, 2010.
DOI : 10.1104/pp.110.158881

URL : https://hal.archives-ouvertes.fr/hal-01805112

S. Fry, W. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiologia Plantarum, vol.89, issue.1, pp.1-3, 1993.
DOI : 10.1111/j.1399-3054.1993.tb01778.x

Y. Li, F. Chen, H. Linskens, and M. Cresti, Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants, Sexual Plant Reproduction, vol.7, issue.3, pp.145-152, 1994.
DOI : 10.1007/BF00228487

M. Bosch, A. Cheung, and P. Hepler, Pectin Methylesterase, a Regulator of Pollen Tube Growth, PLANT PHYSIOLOGY, vol.138, issue.3, pp.1334-1346, 2005.
DOI : 10.1104/pp.105.059865

URL : http://www.plantphysiol.org/content/plantphysiol/138/3/1334.full.pdf

A. Geitmann, How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry, Sexual Plant Reproduction, vol.334, issue.Suppl, pp.63-71, 2010.
DOI : 10.1091/mbc.12.8.2534

A. Geitmann and M. Steer, The Architecture and Properties of the Pollen Tube Cell Wall, Plant Cell Monogr, vol.3, pp.177-200, 2006.
DOI : 10.1007/7089_049

L. Jones, J. Milne, D. Ashford, and S. Mcqueen-mason, Cell wall arabinan is essential for guard cell function, Proceedings of the National Academy of Sciences, vol.25, issue.4, pp.11783-11788, 2003.
DOI : 10.1016/S0305-1978(96)00103-2

URL : http://www.pnas.org/content/100/20/11783.full.pdf

H. Iwai, T. Ishii, and S. Satoh, Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells, Planta, vol.213, issue.6, pp.907-915, 2001.
DOI : 10.1007/s004250100559

C. Orfila, G. Seymour, W. Willats, I. Huxham, M. Jarvis et al., Altered Middle Lamella Homogalacturonan and Disrupted Deposition of (1right-arrow5)-alpha-L-Arabinan in the Pericarp of Cnr, a Ripening Mutant of Tomato, PLANT PHYSIOLOGY, vol.126, issue.1, pp.210-221, 2001.
DOI : 10.1104/pp.126.1.210

M. Pe?a and N. Carpita, Loss of Highly Branched Arabinans and Debranching of Rhamnogalacturonan I Accompany Loss of Firm Texture and Cell Separation during Prolonged Storage of Apple, PLANT PHYSIOLOGY, vol.135, issue.3, pp.1305-1313, 2004.
DOI : 10.1104/pp.104.043679

H. Wu, H. Wang, and A. Cheung, A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower, Cell, vol.82, issue.3, pp.395-403, 1995.
DOI : 10.1016/0092-8674(95)90428-X

F. Balu?ka, J. ?amaj, P. Wojtaszek, D. Volkmann, and D. Menzel, Cytoskeleton-Plasma Membrane-Cell Wall Continuum in Plants. Emerging Links Revisited, PLANT PHYSIOLOGY, vol.133, issue.2, pp.482-491, 2003.
DOI : 10.1104/pp.103.027250

K. Lennon, S. Roy, P. Hepler, and E. Lord, The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth, Sexual Plant Reproduction, vol.11, issue.1, pp.49-59, 1998.
DOI : 10.1007/s004970050120

E. Lord, Adhesion and guidance in compatible pollination, Journal of Experimental Botany, vol.126, issue.23, pp.47-54, 2003.
DOI : 10.1016/S1360-1385(00)01654-X

URL : https://academic.oup.com/jxb/article-pdf/54/380/47/1489666/erg015.pdf

J. Mabs and L. , Pollen tubes were grown for 16h in liquid medium Pistils were dissected from closed flowers (i.e. before pollination) Scale bars = 20 µm (A, B), 10 µm (C) and 50 µm (D-F). o, ovule; ov, ovary; p, papillae; s, stigma; st, style; tt