Skip to Main content Skip to Navigation
Journal articles

2D Rayleigh-Taylor instability: Interfacial arc-length vs. deformation amplitude

Abstract : Fluid interface instabilities are usually studied through the time evolution of the amplitude of deformation of the interface. While this approach is convenient, it often fails to fully describe the evolution of a deforming interface, especially when the interface cannot be represented as a single-valued function of a space coordinate. Here, we present new experimental data on Rayleigh-Taylor 2D instability for immiscible fluids, obtained through the use of magnetic levitation. We observe that new information can be retrieved by using an alternate metric to the amplitude, viz., the total arc-length of the interface (in 2D), or equivalently its total surface area (in 3D). In particular, we identify a master curve for the evolution of the arc-length over time, following three different regimes and on which all our data points fall. We conjecture that the exploration of such alternate metrics will yield equally promising results on a broad range of interface instabilities.
Complete list of metadatas
Contributor : Marie-Charlotte Renoult <>
Submitted on : Friday, April 27, 2018 - 11:34:42 AM
Last modification on : Wednesday, October 14, 2020 - 3:40:32 AM

Links full text



Marie-Charlotte Renoult, Pierre Carles, Sameh Ferjani, Charles Rosenblatt. 2D Rayleigh-Taylor instability: Interfacial arc-length vs. deformation amplitude. EPL - Europhysics Letters, European Physical Society/EDP Sciences/Società Italiana di Fisica/IOP Publishing, 2013, 101 (5), ⟨10.1209/0295-5075/101/54001⟩. ⟨hal-01780177⟩



Record views