K. C. Anderson and R. D. Carrasco, Pathogenesis of myeloma, Annu Rev Pathol, vol.6, pp.249-274, 2011.

P. L. Bergsagel, Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma, Blood, vol.106, pp.296-303, 2005.

M. Chesi and P. L. Bergsagel, Molecular pathogenesis of multiple myeloma: basic and clinical updates, Int J Hematol, vol.97, pp.313-323, 2013.

J. Massagué, G1 cell-cycle control and cancer, Nature, vol.432, pp.298-306, 2004.

E. A. Musgrove, C. E. Caldon, J. Barraclough, A. Stone, and R. L. Sutherland, Cyclin D as a therapeutic target in cancer, Nat Rev Cancer, vol.11, pp.558-572, 2011.

S. Soverini, M. Cavo, C. Cellini, C. Terragna, E. Zamagni et al., Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation, Blood, vol.102, pp.1588-1594, 2003.

S. Bustany, J. Cahu, P. Guardiola, and B. Sola, Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway, BMC Cancer, vol.15, pp.262-273, 2015.

P. Neumeister, F. J. Pixley, Y. Xiong, H. Xie, K. Wu et al.,

, Cyclin D1 governs adhesion and motility of macrophages, Mol Biol Cell, vol.14, pp.2005-2015, 2003.

Z. Li, X. Jiao, C. Wang, X. Ju, Y. Lu et al., Cyclin D1 induction of cellular migration requires p27 KIP1, Cancer Res, vol.66, pp.9986-9994, 2006.

Z. Li, C. Wang, X. Jiao, S. Katiyar, M. C. Casimiro et al., Alternate Cyclin D1 mRNA splicing modulates p27 KIP1 binding and cell migration, J Biol Chem, vol.283, pp.7007-7015, 2008.

Z. Zhong, W. S. Yeow, C. Zou, R. Wassell, C. Wang et al., Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells, Cancer Res, vol.70, pp.2105-2114, 2010.

R. Fernández-hernández, M. Rafel, N. P. Fusté, R. S. Aguayo, J. M. Casanova et al., Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell-matrix adhesion, Cell Cycle, vol.12, pp.2510-2517, 2013.

A. Gozzetti, V. Candi, G. Papini, and M. Bocchia, Therapeutic advancements in multiple myeloma, Front Oncol, vol.4, pp.1-5, 2014.

D. J. Kuhn, Q. Chen, M. Peter, . Voorhees, J. S. Strader et al., Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitinproteasome pathway, against preclinical models of multiple myeloma, Blood, vol.110, pp.3281-3290, 2007.

N. C. Munshi and K. C. Anderson, New strategies in the treatment of multiple myeloma, Clin Cancer Res, vol.19, pp.3337-3344, 2013.

J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines, Blood, vol.93, pp.1658-1567, 1999.

T. H. Landowski, N. E. Olashaw, D. Agrawal, and W. S. Dalton, Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-?B (RelB/p50) in myeloma cells, Oncogene, vol.22, pp.2417-2421, 2003.

M. Fei, Q. Hang, S. Hou, S. He, and C. Ruan, Adhesion to fibronectin induces p27 Kip1 nuclear accumulation through down-regulation of Jab1 and contributes to cell adhesionmediated drug resistance (CAM-DR) in RPMI 8,226 cells, Mol Cell Biol, vol.386, pp.177-187, 2013.

L. A. Hazlehurst, J. S. Damiano, I. Buyuksal, W. J. Pledger, and W. S. Dalton, Adhesion to fibronectin via ?1 integrins regulates p27 kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR), Oncogene, vol.19, pp.4319-4327, 2000.

K. Noborio-hatano, J. Kikuchi, M. Takatoku, R. Shimizu, T. Wada et al., Bortezomib overcomes cell adhesionmediated drug resistance through downregulation of VLA-4 expression in multiple myeloma, Oncogene, vol.28, pp.231-242, 2008.

M. Bolzoni, P. Storti, S. Bonomini, K. Todoerti, D. Guasco et al., Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANKL/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules, Exp Hematol, vol.41, pp.387-397, 2013.

T. R. Hurd, M. Degennaro, and R. Lehmann, Redox regulation of cell adhesion and migration, Trends Cell Biol, vol.22, pp.107-115, 2012.

M. A. Ogasawara and H. Zhang, Redox regulation and its emerging roles in stem cells and stem-like cancer cells, Antioxid Redox Signal, vol.11, pp.1107-1122, 2009.

T. Sakamaki, M. C. Casimiro, X. Ju, A. A. Quong, S. Katiyar et al., Cyclin D1 determines mitochondrial function in vivo, Mol Cell Biol, vol.26, pp.5449-5469, 2006.

G. Tchakarska, M. Roussel, X. Troussard, and B. Sola, Cyclin D1 inhibits mitochondrial activity in B cells, Cancer Res, vol.71, pp.1690-1699, 2011.

M. M. Reddy, M. S. Fernandes, R. Salgia, R. L. Levine, J. D. Griffin et al., NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases, Leukemia, vol.25, pp.281-289, 2011.

A. Tagde, H. Singh, M. H. Kang, and C. P. Reynolds, The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma, Blood Cancer J, vol.4, pp.229-213, 2014.

S. Nerini-molteni, M. Ferrarini, S. Cozza, and F. Caligaris-cappio, Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib, Br J Haematol, vol.14, pp.494-503, 2008.

W. Wang, M. Adachi, R. Kawamura, H. Sakamoto, T. Hayashi et al., Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity, Apoptosis, vol.11, pp.2225-2235, 2006.

Y. Kawano, M. Moschetta, S. Manier, S. Glavey, G. T. Görgün et al., Targeting the bone marrow environment in mutiple myeloma, Immunol Rev, vol.263, pp.160-172, 2015.

P. Neri, L. Ren, A. K. Azab, M. Brentnall, K. Gratton et al., Integrin ?7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion, Blood, vol.117, pp.6202-6213, 2011.

H. Meng, L. Tian, J. Zhou, Z. Li, X. Jiao et al., PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b, Cell Cycle, vol.10, pp.73-81, 2011.

S. Xargay-torrent, M. López-guerra, A. Montraveta, I. Saborit-villarroya, L. Rosich et al., Sorafenib inhibits cell migration and stroma-mediated bortezomib-resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma, Clin Cancer Res, vol.19, pp.586-597, 2013.

R. M. Fernández, M. Ruiz-miró, X. Dolcet, M. Aldea, and E. Garí, Cyclin D1 interacts and collaborates with Ral GTPases cell detachment an motility, Oncogene, vol.30, pp.1936-1946, 2011.

J. Cahu, S. Bustany, and B. Sola, Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells, Cell Death Disease, vol.3, p.446, 2012.

P. V. Raninga, D. Trapani, G. Vuckovic, S. Bhatia, M. Tonissen et al., Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma, Oncotarget, vol.6, pp.15410-15424, 2015.

X. Y. Pei, Y. Dai, and S. Grant, Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitor, Clin Cancer Res, vol.10, pp.3839-3852, 2004.

L. Yin, T. Kufe, D. Avigan, and D. Kufe, Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death, Blood, vol.123, pp.2997-3006, 2014.

E. E. Fink, S. Mannava, A. Bagati, A. Bianchi-smiraglia, J. R. Nair et al., Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells, Leukemia, vol.30, pp.104-111, 2016.

K. Bedard and K. H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol Rev, vol.87, pp.245-313, 2007.

S. Kobayashi, S. Imaioh-ohmi, M. Nakamura, and S. Kanegasaki, Occurence of cytochrome b558 in B-cell lineage of human lymphocytes, Blood, vol.75, pp.458-461, 1990.

J. Honeychurch, W. Alduaij, M. Azizyan, E. J. Cheadle, H. Pelicano et al., Antibody-induced nonapoptotic cell death in human lymphoma and leukemia cells is mediated through a novel reactive oxygen species-dependent pathway, Blood, vol.119, pp.3523-3553, 2012.

L. Gao, M. Gao, G. Yang, Y. Tao, Y. Kong et al., Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ROS generation and ERK1/2, Biomed Res Int, p.459052, 2015.

C. Leow, C. Gerondakis, S. Spencer, and A. , MEK inhibitors as a chemotherapeutic intervention in multiple myeloma, Blood Cancer J, vol.3, p.105, 2013.

A. Goel, D. R. Spitz, and G. J. Weiner, Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma, J Cell Biochem, vol.113, pp.419-425, 2012.

B. Tessoulin, G. Descamps, P. Moreau, S. Maïga, L. Lodé et al., PRIMA-1 Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance, Blood, vol.124, pp.1626-1636, 2014.

L. Yin, T. Kufe, D. Avigan, and D. Kufe, Targeting MUC1-C is synergisticc with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death, Blood, vol.123, pp.2997-3006, 2014.