Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2-type transporter in hemocytes and gills
Yosra Ben Cheikh, Benoît Xuereb, Céline Boulange-Lecomte, Frank Le Foll

To cite this version:

HAL Id: hal-01755816
https://hal-normandie-univ.archives-ouvertes.fr/hal-01755816
Submitted on 30 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multixenobiotic resistance in *Mytilus edulis*: molecular and functional characterization of an ABCG2-type transporter in hemocytes and gills

Yosra Ben Cheikha, Benoit Xuereba, Céline Boulangé-Lecomtea and Frank Le Folla

\textbf{Authors affiliation}
aUniversity of Le Havre Normandy, Environmental Stress and Aquatic Biomonitoring, UMR-I02 SEBIO, 25 rue Philippe Lebon, F-76063 Le Havre, France

\textbf{Corresponding Author}
Yosra Ben Cheikh
E-mail: yosra_bencheikh@yahoo.fr
Tel +33 (0)2 32 74 43 79
Abstract

Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in *Mytilus edulis*. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter share sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the amino acid sequence with corresponding homologs from other organisms was comprised between 49% and 98%. Furthermore, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, more significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity.

In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that form an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers.

Keywords: ABC transporter, efflux activity, blue mussel, invertebrates
1. Introduction

The aquatic environment is polluted by a variety of chemical compounds and heavy metals released by urban communities and industrial plants. Many of these xenobiotics are known to be a threat to most marine species health due to their environmental persistence, bioaccumulation in various tissues and intrinsic toxicity (Anita H Poulsen, 2012; Giarratano et al., 2010). Bivalves of the genus *Mytilus* are of particular interest because of their resistance to chemical contaminants. These bioindicator species are therefore used as sentinel organisms. Immunological responses mediated by hemocytes are frequently investigated to monitor biological effects of water pollution (Akaishi et al., 2007; Auffret et al., 2006; Gupta and Singh, 2011).

In order to survive, marine organisms have developed strategies to overcome adverse effects of pollutants. Bivalves can limit their exposure to toxic compounds using behavioural responses such as shell closure and restriction of filtration rate (Haberkorn et al., 2011; Hégaret et al., 2007). Furthermore, they possess multiple cellular detoxification mechanisms that can influence the uptake, distribution and elimination of xenobiotics (Farris and Hassel, 2006). Among the arsenal of enzymes involved in animal cell detoxification, some members of the ATP Binding Cassette (ABC) superfamily are found (Bard, 2000; Luckenbach et al., 2008; Rioult et al., 2014).

ABC transporters were first described for their role in multidrug resistance (MDR) to chemotherapeutic drugs (Gottesman and Ling, 2006; Nielsen and Skovsgaard, 1992; Sharom, 2008). These ATP-powered transmembrane proteins found in tumor cells of mammals are one of the major cause of chemotherapeutic failure in cancer therapy. They actively pump out of the cytosol into the external medium a multitude of distinct cytotoxic compounds (Kathawala et al., 2015). Similarly to this efflux-based drug resistance, a xenobiotic transport mediated by ABC proteins was demonstrated for the first time in fresh water mussels as a strategy to defense against pollutants (Kurelec, 1992; Kurelec and Pivcević, 1989). Considering the variety of chemically unrelated compounds carried by this system, Kurelec coined the term of Multixenobiotic Resistance (MXR) by analogy to the MDR phenotype (Kurelec, 1992). In marine organisms, ATP-fueled pumps act as a first line of defense, preventing toxic chemicals from entering the cell. Secondarily, if toxicants even enter the cytoplasm, ABC transporters can be the last protection by expelling the toxicants and associated metabolites (Epel et al., 2008).

The MXR phenotype is supposedly ubiquitous in aquatic invertebrates. Functional and molecular assays allowed the identification and characterization of some ABC transporters
members in several species including sponges (Kurelec et al., 1992), innkeeper worms (Toomey and Epel, 1993), molluscs (Faria et al., 2011; Luckenbach and Epel, 2008; McFadzen et al., 2000; Navarro et al., 2012; Rioult et al., 2014) and crabs (Köhler et al., 1998; Minier et al., 2008).

The three major types of MDR proteins in humans include members of the ABCB, the ABCC and the ABCG2 subfamilies (Sarkadi et al., 2006). In marine invertebrates, only ABCB and ABCC transporters have been well described. Two complete sequences analog to ABCB/P-glycoprotein (P-gp) and ABCC/MDR-related protein (MRP) subfamilies were identified in Californian mussel (Luckenbach and Epel, 2008). Furthermore, efflux activities have been confirmed using functional efflux assays with substrates and inhibitors (Luckenbach et al., 2008; Luckenbach and Epel, 2008). Similarly, P-gp transcript as well as pump activity were characterized in the Asian green mussel Perma viridis (Huang et al., 2014). In Mytilus edulis, Luedeking and co-authors obtained fragments of abcb and abcc sequences in various tissues and MXR transcript levels were measured in gills, mantle and digestive gland (Luedeking et al., 2005; Luedeking and Koehler, 2002). Lately, ABCC/MDR transporter was detected in blue mussel hemocytes. Authors demonstrated that pump activity was principally supported by the hemocyte subpopulation eosinophilic granulocytes (Rioult et al., 2014). To our knowledge, only few studies explored the presence of ABCG2/BCRP transporter in bivalves. Protein and gene expression were quantified respectively in the Indian rock oyster Saccostrea forskali (Kingtong et al., 2007) and the Asian clam Corbicula fluminea (Chen et al., 2015).

In this study, we investigate the existence of the third major type of MDR proteins ABCG2 in blue mussel hemocytes and gills. Complete ABCG2 amino acid sequence was identified and characterized. Therefore, ABCG2 gene expression was quantified and transcript levels were compared in mussel tissues. For determining whether ABCG2 transporter is active in M. edulis hemocyte subpopulations and gills, dye efflux assays were performed using fluorescent substrates combined with specific blockers.

2. Material and methods

2.1. Chemicals

Bodipy prazosin (Invitorgen Life technologies) and pheophorbide A (Sigma Aldrich) were used as fluorescent dyes and substrates of BCRP. Inhibitors of ABC transporters described in Table 1 were purchased from Sigma Aldrich and Tebu-bio for Ko134.
2.2. Mussel and tissue collection

Adult mussels, *M. edulis* with shell length ranging from 4 to 5 cm, were collected on the intertidal rocky shore of Yport (0°18'52''E:49°44'30''N, France) between April 2014 and December 2015, immediately transported to the laboratory and placed in a temperature-controlled (10°C) aerated Biotop Nano Cube 60 seawater tank (Sera, Heinsberg, Germany), equipped with mechanical and activated biological filtering. The animals were fed with algae (*Isochrysis galbana*) and maintained in these conditions for at least one week before use.

Hemolymph was withdrawn from the posterior adductor muscle sinus, by gentle aspiration with a 1 mL syringe equipped with a 22G needle. For RNA extraction, pooled aliquots from 10 mussels were centrifuged 5 min at 1200 g. Gills were gently removed from mussel and immediately used in RNA extraction. For efflux activity assays, tissues were kept entire or excised using biopsy punches (6 mm diameter) to obtain disks.

2.3. RNA extraction and cDNA synthesis

Total RNA was isolated from hemocytes or from gills using RNeasy mini kit (Qiagen) according to the manufacture’s recommendations. RNA suspensions were treated with DNase (Turbo DNA free kit, Ambion) for genomic DNA removal. Total RNA concentration was analyzed by spectrophotometry (Nanodrop, Thermo Scientific). RNA integrity was checked by electrophoresis on 1 % agarose gel with SYBR staining (SYBR Safe DNA gel stain, Invitrogen). Reverse transcription was carried from total RNA (1 μg) using M-MLV RNase H minus (100U, Promega) and oligo(dT)20 (1 μg) in the presence of Recombinant RNasin® Ribonuclease Inhibitor (80U, Promega). Complementary first-strand DNA (cDNA, 40 μL) were diluted in 60 μL of ultra-pure water and stored in 5 μL aliquots at -20°C until use.

2.4. Gene fishing and analysis of transporter sequence

The primers used in gene fishing were directed against sequence of abcg2 ortholog from *Mytilus galloprovincialis* (Genbank accession number gi|406717747) and designed using Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/, Table 2). PCR was performed on cDNA gills using Taq’Ozyme purple mix (Ozyme). After an initial denaturation step at 95°C for 2 min, 45 cycles were performed including a denaturation step at 95°C for 30 s, annealing at 62°C for 30 s and extension at 72°C for 1 min. The final extension step was continued for 5 min. The amplified PCR products were purified from 1.2% agarose gel using QIAgold gel extraction kit (Qiagen). Partial cDNA sequences were obtained after sequencing and blasted with abcg2 cDNA from other organisms to verify the homology (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
The 5’ cDNA of *Mytilus edulis* abcg2 was obtained by 5’RACE PCR using SMART RACE cDNA amplification kit (Clontech) according to the user’s manual. The 5’RACE product was amplified by PCR using gene specific primer (Table 2) and universal primer mix supplied with the RACE PCR kit. PCR was performed in a touchdown mode: 5 cycles at 94°C (30 s)/72°C (3 min), 5 cycles 94°C (30 s)/70°C (30 s)/72°C (3 min) and 25 cycles 94°C (30 s)/68°C (30 s)/72°C (3 min). Amplified products were gel purified, cloned and sequenced. The resulting PCR and RACE PCR sequences were assembled using Geneious R7.1.9 software. In order to get the whole open reading frame and to confirm assembled sequences, a PCR reaction was performed using primers directed against *Mytilus edulis* abcg2 (Table 2) following the same cycling conditions cited previously.

Final sequence was analyzed using tools at expasy (http://web.expasy.org/), NCBI (http://www.ncbi.nlm.nih.gov/) and cbs server (http://www.cbs.dtu.dk/services/). Multiple sequence alignment and determinations of identity rates between amino acid sequences of ABC transporters from different organisms were performed using Clustal W2. Phylogenetic tree was built according to Neighbor-Joining method using Geneious R7.1.9 software.

2.5. Quantitative real-time polymerase chain reaction

QPCR analysis was conducted on the Rotor-Gene Q 2-plex HRM (QIAGEN, Courtaboeuf, France) using the QuantiTect® SYBR® Green Master Mix (2X, QIAGEN). Each reaction was run in duplicate with a final volume of 20 μL containing 5 μL cDNA and 0.5 μM of each primer. Specific qPCR primers for abcg2-like and the housekeeping (hk) Elongation factor *ef1α* were designed using ProbeFinder software (https://lifescience.roche.com/, Table 2). The *ef1α* was chosen as hk gene because of its stability from different experimental conditions (Lacroix et al., 2014).

Reactions were initiated with an initial denaturation for 15 min at 95 °C followed by 45 cycles at 94 °C for 15 s, 59 °C for 30 s and 72 °C for 6 s. The melting curve was finally determined during a slow temperature elevation from 60 to 95 °C (1°C.s⁻¹). The run included blank controls (water). For the qPCR efficiencies of each primer pair used, standard curves were generated using eight serial dilutions of cDNA (from 10⁹ to 10¹ copies) (Xuereb et al., 2012). The level of expression of the target genes, normalized to the *ef1α* housekeeping gene, was then calculated using the (1+efficiency)⁻ΔCt formula.
2.6. Analysis of MXR activity

MXR activity was assessed in hemocytes by flow cytometry and in gills by microplate reader assays using dye efflux assays in absence or presence of inhibitors.

2.6.1. MXR activity in hemocytes

Crude hemolymph was placed into individual wells of 24-well tissue-culture plates (Greiner) and cells allowed to adhere for 15 minutes at 15 °C. The hemolymph was removed and replaced with 400 µL of marine physiological saline solution (MPSS, pH 7.8, 0.2 µm filtered) alone for the control or containing ABC transporter inhibitors at 30 µM final concentration. After 30 min of incubation at 15°C, fluorescent dyes were added: pheophorbide A at 5 µM or bodipy prazosin at 0.5 µM and incubated 15 min at 15 °C. Supernatants were gently aspirated and attached cells were removed by adding cold Alsever’s solution (300 mM NaCl, 100 mM Glucose, 30 mM sodium Citrate, 26 mM citric acid, 10 mM EDTA, pH 5.4) and immediately analyzed by Cell Lab Quanta SC MPL flow cytometer (Beckman Coulter).

2.6.2. MXR activity in gills

Entire gills or tissue disks obtained by biopsy punches, were placed into individuals wells of 12-well plates (Greiner) or black 96-well plates (nunc) filled with MPSS. ABC transporter inhibitors were added at 30 µM and incubated for 30 min at 15 °C. Thereafter, pheophorbide A (5 µM) or bodipy prazosin (0.5 µM) were added for 15 min at 15 °C. Whole gills or tissue disks were transferred in new wells containing MPSS to remove the probe excess and homogenized by horizontal rotation for 30 s. The fluorescence accumulated was measured with a microplate reader (Tecan, excitation/ emission wavelength in nm: 490/530 for bodipy prazosin and 395/670 for pheophorbide A).

Mean values of fluorescence measured from biopsies were plotted and compared. A MXR activity factor (MAF) was calculated using the following formula: 100 * (\frac{MFL_{inhibitor} - MFL_{ctrl}}{MFL_{inhibitor}}) wherein MFL_{inhibitor} and MFL_{ctrl} are the mean fluorescence intensity values measured in the presence and absence of inhibitor (Lebedeva et al., 2011).

2.7. Statistical analyses

Statistical analysis was performed by using SigmaPlot 12 (Systat Software Inc., Chicago, IL). Replicates were averaged and the values were tested for normality (Shapiro-Wilk) and paired comparisons were performed by Student's t-tests. Statistical significance was accepted for *p < 0.05, **p < 0.01 or ***p < 0.001.
3. Results

3.1. Identification and phylogenetic analysis of ABCG2 transporter

The expression of ABCG2 gene in *Mytilus edulis* gills was investigated by RT PCR. The amplified product had the expected size and generated a partial cDNA sequence of 542 pb. Blast analysis confirmed that the fragment was a part of an abcg2-like gene sequence.

The 2198 pb full length cDNA sequence was secondarily obtained by assembling of various sequences from RACE and PCR reactions performed on different cDNAs (Genbank accession number KX551963). It contained a 1926 pb ORF encoding a 641 amino acid polypeptide. In addition, 265 pb and 6 pb of 5’- and 3’- UTR were identified. The deduced amino acid sequence has a calculated molecular mass of 71.5 kDa and a theoretical isoelectric point of 7.57.

Analyses of amino acid sequence revealed the structural organization of ABCG2 transporter in a single subunit with a nucleotide binding domain (NBD) and a membrane spanning domain (MSD). The NBD contained highly conserved motifs of ABC transporters: the walker A/P-loop, walker B, ABC signature (C motif) as well as the Q-loop/lid upstream of the walker A and the D-loop and H-loop/switch regions downstream of the walker B (Figure 1-2). Furthermore, the MSD was organized in six putative transmembrane helices and the NH₂-terminal was located in the cytosol. Two possible N-glycosylation sites (Asn-Val-Ser) were identified respectively in the 2nd-3rd (amino acid 454-456) and the 5th-6th (amino acid 552-554) transmembrane helice. No signal peptide was detected (Figure 1-2).

The phylogenetic analysis revealed the similarity of *M. edulis* ABCG2 with other representative ABCG2 protein from different species (Figure 3). *M. edulis* amino acid sequence matched the most with *Mytilus galloprovincialis* (98%), *Crassostrea gigas* (65%) and *Lottia gigantea* ABCG2 (64%) while identities with other vertebrates and invertebrates orthologs were comprised between 49% and 61% (49% with human protein).

3.2. ABCG2 transcript levels in hemocytes and gills

The expression of abcg2-like mRNAs was investigated in *Mytilus edulis* hemocytes and gills (Figure 4). Transcript levels were normalized to *ef1a*. This housekeeping gene was stable amongst tissues (data not shown). Both tissues showed the presence of abcg2-like gene product. Furthermore, transcripts were significantly more abundant in gills (2.5 times, p<0.01) than in hemocytes.
3.3. **ABCG2 transporter activity**

BCRP efflux activity was investigated in hemocyte suspensions and gill tissues using bodipy prazosin (Cooray et al., 2004) and pheophorbide A (Robey et al., 2004) as ABCG2 pump allocrites. Cells were treated with pharmacological blockers characterized by their specificity for human ABC transporters (Table 1).

3.3.1. In hemocytes

BCRP efflux activity was explored in hemocyte subpopulations by flow cytometry. Cell fluorescence was analysed according to cell size (EV expressed in µm) and inner complexity (side-scatter signal). Two non-overlapping regions were defined on EV/SS dot plots. The region R1 corresponds to small semi-granular basophils and the region R2 to large granular and semi-granular cells called eosinophils (Figure 5a). The normalized intracellular fluorescence concentration (FL-FC, arbitrary units) was calculated from the ratio of FL to EV (Figure 5b).

The cell fluorescence varied according to the probe used. Bodipy prazosin was more accumulated in eosinophils. In contrary, pheophorbide A was slightly more concentrated in basophils. In the presence of ABC transporter inhibitors sildenafil, MK571, Ko134 and elacridar, bodipy prazosin accumulation increased significantly in hemocytes particularly in eosinophils (p<0.01 for MK571 and p<0.001 for the other blockers), while pranlukast had no effect on dye efflux (Figure 5c). By contrast, pheophorbide A efflux was only non significantly inhibited by all blockers, at different levels.

To compare blockers effects on pump activity, the multidrug resistance activity factor was determined (Table 3). Cells charged with bodipy prazosin showed an increased MAF for most inhibitors (sildenafil, MK571, KP0134, elacridar) compared to hemocytes incubated with pheophorbide A. Furthermore, with bodipy prazosin no differences were noted between hemocyte subpopulations. By contrast, MAF values were less important in basophils loaded with pheophorbide A than in eosinophils.

3.3.2. In gills

ABCG2 pump activity was explored in gills with a microplate reader assay. Only MK571 and Ko134 significantly increased bodipy prazosin accumulation (p<0.05), indicating an inhibition of the dye efflux (Figure 6a). The other blockers induced a slight but non-significant increase in cell fluorescence. With the probe pheophorbide A, slight fluorescence increases were obtained mainly in gills pre-incubated with sildenafil or ko134, but no inhibitor produced result
significantly different from control measurements. Furthermore, in control conditions, both BCRP allocrites were more effluxed from the anterior-labial part of gills (Figure 6b). In the presence of pump blockers (MK571 and Ko134), fluorescence increased and was more concentrated in the center and anterior side of the tissues.

Gills charged with bodipy prazosin showed higher MAF values compared to pheophorbide A. in the presence of Ko134, efflux activity was more important for both fluorescent probes (Table 4). However, MK571 showed a high MAF value only for bodipy prazosin.

4. Discussion
ABC transporters play an important role in cell detoxification. The first genome sequencing and analysis of *Mytilus galloprovincialis* recently pointed out Multidrug Associated Genes as significantly overrepresented in this genus (Murgarella et al., 2016). Until now, only B and C subfamilies were identified in the blue mussel. In this study, we expand the knowledge on ABC pump subtypes and investigate the presence of ABCG2 in *Mytilus edulis* tissues. To this purpose, we combined molecular and functional approaches to explore gene expression and pump activity in the gills and hemocytes.

4.1. ABCG2 molecular characterization
ABCG2 amino acid sequence was identified from the gills of *Mytilus edulis* and characterized. It contained typical conserved structural domains of ABC transporter. Characteristic motifs including the Walker A and B motifs are common to many ATP binding proteins while aromatic D, H and Q loops as well as ABC signature are unique to the family (Dean et al., 2001; Linton, 2007). They play an important role in the functioning of the transporter (Linton, 2007). According to the predicted structure, *Mytilus edulis* ABCG2 is a half transporter, with one NBD followed by one MSD and a molecular weight equal to 71.5 KDa which is closely similar to human ABCG2 (Kathawala et al., 2015).

Phylogenetic analysis grouped the identified protein with other ABCG2 members from several species. *Mytilus edulis* ABCG2 was closely related to invertebrate transporters especially *Mytilus galloprovincialis* and *Crassostrea gigas* efflux pumps. This classification is not surprising considering that ABC transporters are well conserved across species. Most of the studies reported a strong homology between bivalve ABC pumps. For example, Huang et al. (2015) identified P-gp in the bivalve species *R. philippinarum, S. subcrenata* and *T. granosa* exhibiting high homology with other bivalve mollusks such as *C. ariakensis, C. gigas, M. californianus* and *M. galloprovincialis*.
Since ABCG2 transcript has also been found in hemocytes, we quantified the abundance mRNAs in both tissues. ABCG2 copy number were 2 fold higher in gills than hemocytes. This apparent disparity in gene expression over tissues has been demonstrated for other members of ABC transporters. P-gp transcripts were more abundant in gills than hemocytes in the scallop *C. farreri* (Miao et al., 2014) and the mussel *M. galloprovincialis* (Della Torre et al., 2014; Franzellitti et al., 2016). Many authors suggested that the tissue-specific expression of ABC genes is a consequence of tissue involvement in adsorption, metabolism and elimination of toxic compounds (Della Torre et al., 2014; Huang et al., 2015). The latter hypothesis may be plausible nevertheless further investigations are needed to confirm it.

4.2. ABCG2 pump efflux activity

If ABCG2 expression has been poorly described in bivalves, data on pump activity are inexistent. Herein, we explored for the first time BCRP pump activity using fluorescent probes, allocrite to human BCRP, in combination with a battery of inhibitors. In hemocytes, analysis was performed considering two major subpopulations. The first is represented by small semi granular basophils while the second includes complex granulocytes and agranular hyalinocytes (Le Foll et al., 2010). Results showed that the rate of accumulated fluorescence varied according to both cell subtypes and allocrite probes. Either in basal condition or in the presence of blockers, bodipy prazosin was more concentrated in eosinophils and inversely pheophorbide A was more stored in basophils. In appearance, these probe heterogeneous distributions may be a consequence of pronounced activity localized in particular cell subpopulation as reported by other studies. In this respect, Rioult et al. (2014) demonstrated that ABCC activity was supported by *Mytilus edulis* granulocytes. However, herein even though probes are supposed to be both allocrite to ABCG2 (Robey et al., 2004; Shi et al., 2011), their distribution profiles in hemocytes were contradictory. These discrepancies can be accounted for by to a dual effect of transporter location and differential affinity of substrates to cell compartments. According to few studies, ABC pumps can be located in mammalian lysosomal membrane in addition of plasmalemma (Rajagopal and Simon, 2003; Wioland et al., 2000). Furthermore, in mussel blood cells, it has been shown a retention of the fluorescent P-gp substrate rhodamine B in lysosomes, reversible by verapamil as blocker (Svensson et al., 2003). Another explanation to the higher accumulation of bodipy prazosin in eosinophils would be the presence of an additional pump contributing to the observed activity. Actually, if pheophorbide A has been proved to be a single substrate to mammalian ABCG2 (Robey et al., 2004), the specificity of bodipy prazosin was more discussed. Several studies reported the efflux of bodipy prazosin by
Human P-gp (Chufan et al., 2013; Kimchi-Sarfaty et al., 2002). In mussel hemocytes, the existence of an active P-gp is controversial. Classical ABCB blockers were ineffective on calcein-AM or rhodamine 123 efflux in hemocytes of *M. edulis* (Rioult et al., 2014) and *M. galloprovincialis* (Della Torre et al., 2014; Franzellitti et al., 2016). In contrast, rhodamine B efflux was inhibited by the same blockers in blood cells of the blue mussel (Svensson et al., 2003) and the freshwater painter's mussel (Zaja et al., 2006). According to these contradictory findings, the possibility of an ABCB pump interference in MXR activity cannot be excluded. It is probable that the mussel P-gp has an affinity profiles toward allocrites that differs from that of mammalian transporter and that the mussel efflux pump is capable to interact with other substrates like bodipy prazosin. Considering this latter point, a combination of allocrites and inhibitors is required to properly characterize the pump of interest.

In hemocytes, the specific blockers of mammalian BCRP, elacridar and Ko134, enhanced fluorescence level of both probes indicating an active role of ABCG2 in cell subpopulations. By contrast, sildenafil acted only on bodipy prazosin efflux and had no effect on pheophorbide A. This blocker has been described for reversing the resistance of ABCG2 and ABCB1 in Human cells (Shi et al., 2011). Surprisingly, classical inhibitors of C class transporter increased also the accumulation of fluorescent dyes. MK571 blocked the efflux of both probes while pranlukast had an effect only on pheophorbide A. Several studies used MK571 for his specific action against ABCC pump in bivalves like the blue mussel (Rioult et al., 2014), the Mediterranean mussel (Della Torre et al., 2014; Franzellitti et al., 2016), the Californian mussel (Luckenbach et al., 2008; Luckenbach and Epel, 2008) and the zebra mussel (Faria et al., 2016, 2011). However, in our study, it seems that this blocker is also able to interact with ABCG2 in mussels. Furthermore, Fischer et al. (2013) reported its action on zebrafish ABCB4. Thus, regarding this polyspecificity, results should be interpreted more carefully particularly when the tissue expresses multiple transporters.

In gills, dye accumulation was enhanced at different levels after treatment with blockers indicating a BCRP activity. Ko134 inhibited efficiently the efflux of bodipy prazosin (MAF=29±6.4) and pheophorbide A (MAF=28±7.1), whereas, MK571 blocked more bodipy prazosin (MAF=38±8.1). The difference of substrate inhibition profiles compared to hemocytes may be due to the heterogeneous distribution of the transporter in gills. Indeed, BCRP efflux activity seems to be concentrated in the anterior side of gills suggesting a localized expression of ABCG2. ABC transporter localization has been explored in few studies. P-gp was detected in apical membranes of *Mytilus galloprovincialis* gills at the tissue environment interface and
authors suggested his role as a barrier against entrance of xenobiotics (Luckenbach and Epel, 2008). Similarly, BCRP was found in apical border of mammalian tissues, (Leslie et al., 2005) and Saccostrea forskali gills (Kingtong et al., 2007) but its exact physiological implication remain unclear. Numerous studies confirmed its contribution to controlling the disposition and tissue exposure of endobiotics and xenobiotics including antibiotics, sterols, immune-suppressants, fluorescent dyes, photosensitizers (for review Horsey et al., 2016, Mo and Zhang 2012). Interestingly, ABCG2 seems also to play a role in immune modulation. Indeed, the transporter participate to the differentiation of skin Langerhans cells (Van de Ven et al., 2012) and myeloid dendritic cells (Jin and al., 2014). Consequently, we may think that Mytilus edulis ABCG2 has an immune defense function in hemocytes besides the detoxification task.

5. Conclusion
In this study, we identified and characterized a new ABC transporter belonging to G2 subtype in Mytilus edulis. Phylogenetic analysis revealed a sequence homology and a similar organizational structure than other ABCG2 family members. Furthermore, transcripts were expressed in hemocytes and with higher level in gills. Efflux activity assays show that Mytilus edulis has an active BCRP protein with an heterogeneous distribution in hemocyte subpopulations and gill tissues. Based on these results, it is clear that several ABC transporters contribute to MXR defense system in Mytilus edulis. Efforts have to be made to clarify the distinction between the different members and to explore their single function and specificity towards allocrites and chemosensitizers.

Acknowledgements
This work received fundings from the State/Region Plan Contract (CPER) allocated through the Research Federation FR CNRS 3730 SCALE (Sciences Appliquées à L’Environnement) and from the project IPOC supported by the Agence Nationale de la Recherche “Interactions between POllution and Climate changes: development of improved monitoring strategy” project (ANR-12-ISV7-0004). Yosra Ben Cheikh was a recipient for a Ph.D. grant from the Conseil Regional de Haute-Normandie. We thank SEBIO technical staff Aurélie Duflot for the contribution.
References

Wioland, M.A., Fleury-Feith, J., Corlieu, P., Comfo, F., Monceaux, G., Lacau-St-Guily, J., Bernaudin, J.F., 2000. CFTR, MDR1, and MRP1 immunolocalization in normal...

Figure legend

Figure 1. Topology of the *Mytilus edulis* ABCG2 protein with membrane spanning domains (MSD) as predicted by TMHMM v2.0 and nucleotide binding domain (NBD) indicated by the Walkers A and B, the C motif, the Q-, D- and H-loops. GS marks the N-glycosylation sites.

Figure 2. ClustalW alignments of *Mytilus edulis* ABCG2 with human ABCG2 transporter (GenBank accession no. Q9UNQ0). Conserved Walker A and B motifs, the ABC signature C motif, Q-, D- and H-loops are indicated with coloured boxes. Underlined sections represent transmembrane helices according to the TMHMM program. GS marks the N-glycosylation sites. * indicate similar amino acid

Figure 3. Phylogenetic tree based on multiple alignment (ClustalX) of various ABCG2 transporter subtype sequences from diverse vertebrates and invertebrates. Tree was generated using the neighbour-joining method, distances are shown at the nodes.

Figure 4. Relative expression of abcg2-like in *Mytilus edulis* hemocytes and gills. Transcript levels are normalized to *ef1a* (hk gene). Letters indicate significant differences (mean ± SEM, n=5, p<0.01, Student's t-test).

Figure 5. Flow cytometry analysis of BCRP efflux activity in hemocyte subpopulations. Cells were preincubated for 30 min with various blockers at 30 µM and then a fluorescent dye, bodipy prazosin (0.5 µM) or pheophorbide A (5µM), was loaded for 15 min. a, dot plot of cell Coulter-type electronic volume (EV), graphed versus cell complexity side-scatter (SS). Two subpopulations of interest have been delimited by off-line analysis and considered to correspond to basophils and eosinophils. b, normalized fluorescence (FL1-FC, for FL1-fluorescence concentration) distributions of the sample presented in a, expressed as the ratio of FL1 to cell size. c, mean fluorescence of hemocytes in absence or presence of blockers, for respective fluorescent dyes (bars are SEM, n=3-5). * indicates significant differences from the control (Student’s t-test, *p<0.05) and § marks differences between hemocyte subpopulations (Student’s t-test, §p<0.05).

Figure 6. BCRP efflux activity in gills measured by dye accumulation in presence of ABC transporter inhibitors. Cells were preincubated for 30 min with various blockers at 30 µM and then a fluorescent dye, bodipy prazosin (0.5 µM) or pheophorbide A (5µM), was loaded for 15 min. a, mean of fluorescence of gills in absence or presence of blockers and, for respective fluorescent dyes (bars are SEM, n=4, *p<0.05 Student’s t-test). b, colour-coded cartography of
probes accumulation in gills in control and blocked samples (P: posterior, A: anterior, DS: Dorsal side, VS: Ventral side)
Table 1. Specificity of ABC blockers used in this study

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Blocker specificity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sildenafil</td>
<td>ABCB/ABCG2</td>
<td>Shi et al., 2011</td>
</tr>
<tr>
<td>MK571</td>
<td>ABC</td>
<td>Olson et al., 2001</td>
</tr>
<tr>
<td>Pranlukast (ONO-1078)</td>
<td>ABCC</td>
<td>Nagayama et al., 1998</td>
</tr>
<tr>
<td>Ko134</td>
<td>ABCG2</td>
<td>Lepist et al., 2012</td>
</tr>
<tr>
<td>Elacridar</td>
<td>ABCG2</td>
<td>Sato et al., 2015</td>
</tr>
</tbody>
</table>

Table 2. Primers used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession number</th>
<th>Fw 5'-3'</th>
<th>Rev 5'-3'</th>
<th>Tm (°C)</th>
<th>Amplicon size (pb)</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcg2</td>
<td>gi</td>
<td>406717747</td>
<td>CCCTGCTGGTTTAAGTGGAC</td>
<td>ATCAACACCAACCACCTGCA</td>
<td>59</td>
<td>879</td>
</tr>
<tr>
<td></td>
<td>KX551963</td>
<td>GCGAGATGGACAAAAACGAACC</td>
<td>ATGGATTTGGTCCTTGCACT</td>
<td>60</td>
<td>2248</td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>KX551963</td>
<td>TGGTGGGCTATGTTGTCAGGTGA</td>
<td>CTTTCTCACCAGATACACCACGGA</td>
<td>64</td>
<td>214</td>
<td>PCR</td>
</tr>
<tr>
<td></td>
<td>KX551963</td>
<td>TGGCTATTGATGAAACCAACA</td>
<td>TCCCTCTTITTAATGCTAATCTTCTC</td>
<td>59</td>
<td>95</td>
<td>qPCR</td>
</tr>
<tr>
<td>ef1a</td>
<td>AF063420.1</td>
<td>TGGCTATTGATGAAACCAACA</td>
<td>TCCCTCTTITTAATGCTAATCTTCTC</td>
<td>59</td>
<td>61</td>
<td>qPCR</td>
</tr>
</tbody>
</table>

Table 3. Comparison of BCRP activity detection in hemocyte subpopulations using BCRP probes and inhibitors of different specificity

<table>
<thead>
<tr>
<th>BCRP Probe</th>
<th>Hemocyte subpopulation</th>
<th>Sildenafil</th>
<th>MK571</th>
<th>Ko134</th>
<th>Elacridar</th>
<th>Pranlukast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodipy prazosin</td>
<td>Basophils</td>
<td>55 ± 6.9</td>
<td>38 ± 11.7</td>
<td>25 ± 9.9</td>
<td>44 ± 5.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Eosinophils</td>
<td>53 ± 2.5</td>
<td>39 ± 5.6</td>
<td>32 ± 1.3</td>
<td>46 ± 2.5</td>
<td>0</td>
</tr>
<tr>
<td>Pheophorbide A</td>
<td>Basophils</td>
<td>9 ± 8.6</td>
<td>35 ± 11.9</td>
<td>35 ± 15.8</td>
<td>21 ± 13.6</td>
<td>36 ± 12.1</td>
</tr>
<tr>
<td></td>
<td>Eosinophils</td>
<td>18 ± 12.3</td>
<td>50 ± 8.3</td>
<td>41 ± 14.7</td>
<td>25 ± 12.5</td>
<td>41 ± 12.6</td>
</tr>
</tbody>
</table>

Average MAF values ± SEM for three (for pheophorbide A) and five (for bodipy prazosin) representative experiments are provided. Negative MAF values have been replaced with 0.

Table 4. Comparison of BCRP activity detection gills using BCRP probes and inhibitors of different specificity

<table>
<thead>
<tr>
<th>BCRP Probe</th>
<th>Sildenafil</th>
<th>MK571</th>
<th>Ko134</th>
<th>Elacridar</th>
<th>Pranlukast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodipy prazosin</td>
<td>12 ± 8.3</td>
<td>38 ± 8.1</td>
<td>29 ± 6.4</td>
<td>18 ± 7.2</td>
<td>17 ± 10.5</td>
</tr>
<tr>
<td>Pheophorbide A</td>
<td>22 ± 4.2</td>
<td>13 ± 8</td>
<td>28 ± 7.1</td>
<td>17 ± 4.9</td>
<td>6 ± 15.2</td>
</tr>
</tbody>
</table>

Average MAF values ± SEM for four representative experiments are provided. Negative MAF values have been replaced with 0.
Hemocytes

RNA expression relative to EFα1

Gills