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S U M M A R Y
The seismoelectric method is based on the interpretation of the electrical field associated with
the conversion of mechanical to electromagnetic energy during the propagation of seismic
waves in heterogeneous porous media. We propose an extension of a poroacoustic model
that takes into account fluid flow and the effect of saturation. This model is coupled with an
electrokinetic model accounting for the effect of saturation and in agreement with available
experimental data in sands and carbonate rocks. We also developed new scaling laws for the
permeability, the streaming potential coupling coefficient and the capillary entry pressure of
porous media. The theory is developed for frequencies much below the critical frequency
at which inertial effects starts to dominate in the Navier–Stokes equation (>10 kHz). The
equations used to compute the propagation of the P waves and the seismoelectric effect in un-
saturated condition are solved with finite elements using triangular meshing. We demonstrate
the usefulness of a recently developed technique, seismoelectric beamforming, to localize
saturation fronts by focusing seismic waves and looking at the resulting seismoelectric con-
versions. This method is applied to a cross-hole problem showing how a saturation front
characterized by a drop in the electrical conductivity and compressibility is responsible for
seismoelectric conversions. These conversions can be used, in turn, to determine the position
of the front over time.

Key words: Electrical properties; Magnetic and electrical properties; Hydrogeophysics; Per-
meability and porosity; Wave propagation; Acoustic properties.

1 I N T RO D U C T I O N

The seismoelectric method has recently received a lot of attention
because of its sensitivity to heterogeneities in mechanical, hydraulic
and electrical properties (e.g. Hunt & Worthington 2000; Fourie
2003; Zhu et al. 2008; Jardani et al. 2010) and the detection of
resonance effects in porous formations (see Revil & Jardani 2010
for heavy oils and Jougnot et al. 2013 for the presence of fractures).
Since Pride (1994), most of the modelling efforts in computing
the seismoelectric effect (e.g. Pride & Haartsen 1996; Haartsen &
Pride 1997; Garambois & Dietrich 2002; Haines 2004; Hu et al.
2007) have been based on the following assumptions: (1) use of a
Biot theory (Biot 1956a,b) in solving the equations for the solid
and fluid displacements vectors, (2) solving the electromagnetic
problem in the diffusive limit of the Maxwell equations and (3)

∗Formerly at: School of Civil Engineering, Queen’s University Belfast,
Belfast BT9 5AG, Northern Ireland.

using an electrokinetic theory based on the use of the zeta potential
(a local electrostatic potential defined inside the electrical double
layer coating the surface of the solid phase).

Revil, Jardani, and coworkers (Jardani et al. 2010; Revil &
Jardani 2010; Araji et al. 2012; Revil & Mahardika 2013) have
recently developed an alternative approach based on (1) solving the
Biot theory in terms of the solid displacement vector and the fluid
pressure (a classical approach in mechanics, e.g. Karpfinger et al.
2009, but curiously not used in the modelling of seismoelectric
effects), (2) solving the electromagnetic problem in its quasi-static
limit of the Maxwell equations and (3) used an electrokinetic theory
based on the charge per unit pore volume as an alternative to the zeta-
potential-based model. The advantages of this modelling approach
are (1) the speed of the forward modelling is increased considerably
because we are solving the hydromechanical equations for four un-
knowns in 3-D (six unknowns in the approach used by Pride and
followers). (2) The speed of the electromagnetic forward problem
is also drastically increased (solving a Poisson-type equation is
indeed much faster than solving a diffusion-based problem and
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reasonably accurate for the seismoelectric problem). (3) The model
based on the volumetric charge density is using additional relation-
ships between the charge density and the permeability, decreasing
the total number of unknowns in the petrophysical model. This al-
lows, as shown below, a straightforward extension of the theory at
partial saturations. The gain taken in the computational speed of
the forward problem has been used to implement different inver-
sion algorithms based on complementary stochastic (Jardani et al.
2010) and deterministic (Araji et al. 2012) methods. Recently, Sava
& Revil (2012) have proposed to use a poroacoustic approximation
to speed up the computation of the seismoelectric problem for very
complex geometries.

With the exception of Revil & Mahardika (2013) and Warden
et al. (2013), all the seismoelectric theories (Pride 1994; Revil &
Jardani 2010) have been developed in fully water-saturated condi-
tions. The goal of this paper is to propose a simple yet accurate
poroacoustic theory coupled with dynamic electrokinetic theory for
partially saturated porous media. Unsaturated streaming potentials
have also recently attracted some attention in looking at vadose
zone transport properties (Mboh et al. 2012) and CO2 sequestration
(Vieira et al. 2012; Talebian et al. 2013).

We consider below a porous material (isotropic) with two im-
miscible pore fluids, air (or oil) and water, water being the wetting
phase. The non-wetting phase is considered to be a good insula-
tor. We neglect the electrical double layer associated with the air
(oil)/water interface (Leroy et al. 2012) assuming that the surface
area associated with this interface is much smaller than the charge
density contribution associated with the minerals/water interface.
The extension of the seismoelectric theory to unsaturated conditions
is actually quite straightforward. It will be based on a combination
of a simple, poroacoustic theory to which we added an extension
of the electrokinetic theory in unsaturated conditions (Linde et al.
2007; Revil et al. 2007).

2 T H E O RY

2.1 Poroacoustic theory in saturated conditions

The propagation of a seismic wave in the acoustic approximation
can be described in terms of a pressure perturbation P(r, t) (true
pressure minus the equilibrium pressure) or in terms of a fluid dis-
placement u(r, t). The volume strain θ is related to the displacement
by,

θ = �V

V
= ∇ · u, (1)

where �V/V represents a relative variation of volume of the porous
material during the passage of the seismic wave. The compressibility
of the material is defined, in isothermal conditions, as

1

Ku
= − 1

V

(
∂V

∂ P

)
T,m f

, (2)

where P denotes the confining pressure (in Pa), m f denotes the mass
of fluid per unit volume of material and Ku denotes the bulk modulus
(in Pa) of the porous material in undrained conditions. In this model,
we will assume that we can compute the effect of the passage of
a seismic wave on fluid flow in two steps: (1) An instantaneous
deformation, in undrained conditions, during the passage of the
seismic wave and (2) a slow deformation corresponding to the flow
of the fluid in the pore space. The confining pressure (positive in

compression) is related to the stress tensor T by,

P = −1

3
Trace T. (3)

The modulus Ku (in Pa) is defined by (e.g. Wang 2000),

Ku = K f (Ks − K ) + φK
(
Ks − K f

)
K f (1 − φ − K/Ks) + φKs

, (4)

where Ks and Kf denote the bulk moduli of the solid and fluid phases,
respectively, K is the bulk modulus (in Pa) of the skeleton (drained
bulk modulus) and φ denotes the connected porosity. The assump-
tions corresponding to these deformation of the porous material
during the undrained deformation of the porous material are those
of Gassmann theory (Gassmann 1951): (1) The porous material is
macroscopically homogeneous, monomineralic and isotropic, (2)
the pore space is interconnected and (3) the pore space is filled with
a frictionless fluid (this is not the case during the flow of the pore
fluid during the drained deformation of the material).
We use Hooke’s law for the stress tensor,

T = 3Ku vol(ε) + 2G dev(ε), (5)

where vol(ε) and dev(ε) denote the volumetric strain tensor and the
deviatoric (traceless) strain tensor, respectively, and G described the
shear modulus of the skeleton (frame) of the porous material.. The
macroscopic pressure perturbation is related to the displacement
by,

P = −Ku∇ · u. (6)

However, to be compatible with the P-wave velocity, this equation
needs to be replaced by,

P = −
(

Ku + 4

3
G

)
∇ · u. (7)

Such transformation is classical to adapt the elastic case to the
acoustic approximation (e.g. Alkhalifah 1998, 2000, 2003). Eq. (5)
corresponds to Hookes’s law for in the acoustic approximation and
is valid for small deformation (θ � 1). To get the field equation for
the pressure perturbation P, we need to combine this equation with
Newton’s law, which is given by,

− ∇ P + F = ρ ü, (8)

where F is a source force and ρ = (1 + φ)ρS + φρ f (in kg m−3)
denotes the bulk density of material, ρS and ρ f denote the mass den-
sities of the solid and pore solution, respectively, and ü corresponds
to the acceleration of the seismic wave. As we need to express the
divergence of the displacement in terms of pressure, we want to take
the divergence of eq. (8). This yields,

− ∇ ·
(

1

ρ
∇ P

)
+ ∇ ·

(
1

ρ
F

)
= ∂2

∂t2
(∇ · u) , (9)

− ∇ ·
(

1

ρ
∇ P

)
+ ∇ ·

(
1

ρ
F

)
= − 1

Ku + 4
3 G

(
∂2 P

∂t2

)
, (10)

∂2 P

∂t2
−

(
Ku + 4

3
G

)
∇ ·

(
1

ρ
∇ P

)
= −

(
Ku + 4

3
G

)
∇ ·

(
1

ρ
F

)
,

(11)

which yields the acoustic wave equation with inhomogeneous
source term f (r, t), that specifies the location and time history
of the source

∂2 P

∂t2
−

(
Ku + 4

3
G

)
∇ ·

(
1

ρ
∇ P

)
= f (r, t), (12)
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f (r, t) = −
(

Ku + 4

3
G

)
∇ ·

(
1

ρ
F

)
. (13)

If we wish to determine the displacement of the fluid, we can, for
instance, consider a wave with a sinusoidal time dependence given
by,

P(r, t) = Pω(r)exp(−iωt), (14)

where i denotes the pure imaginary number and ω is the angular
frequency. Inserting eq. (14) into the acoustic equation, neglecting
the spatial variation in the density and the source term, shows that
the amplitudes of the seismic waves obey the scalar Helmholtz
equation,

∇2 Pω(r) + ω2

c2
p

Pω(r) = 0, (15)

cp =
(

Ku + 4
3 G

ρ

) 1
2

. (16)

If we consider Newton’s law, eq. (8), we obtain the following equa-
tion for the displacement of the fluid,

u(r, t) = − 1

ρω2
∇ pω(r)exp(−iωt). (17)

Because the curl of a gradient is always equal to zero, we have the
property ∇ × u(r, t) = 0. The displacement is irrotational, which
means that the pressure wave is purely longitudinal and corresponds
to a P wave with a seismic velocity given by eq. (16).

The harmonic pressure is sketched in Fig. 1. It is responsible for
areas of dilation and contraction of the porous material (Fig. 1a).
In turn, these areas of dilation and contraction are going to be
responsible for change in the fluid pressure as the fluid stay in
contact with the solid during the deformation of the material. Now,
we need to express the pressure change on the material to a pore
fluid pressure change. In the undrained regime of poroelasticity, the
pressure P is related to the so-called undrained pore fluid pressure
p by (e.g. Wang 2000),

p = B P, (18)

where 0 ≤ B ≤ 1 is called the Skempton coefficient given by,

B = 1 − K/Ku

1 − K/KS
, (19)

where Ku is the undrained bulk modulus (in Pa), and KS the bulk
modulus of the solid phase (in Pa). The passage of the wave gen-
erates a confining pressure fluctuations P to a representative el-
ementary volume of the rock. This change in confining pressure
generates, in turn, a change in the pore fluid pressure and, therefore,
the flow of the pore water (Figs 1b and c). Darcy’s law provides the
needed constitutive equation to determine the flux of water through
the porous material,

ẇ = − kS

η f
∇ p, (20)

where w denotes the averaged fluid–solid relative displacement vec-
tor (in m), ẇ denotes the Darcy velocity (flux of water in a La-
grangian framework associated with the deformation of the skele-
ton), kS denotes the permeability at saturation and η f represents the
dynamic viscosity of the pore fluid.

In summary, the properties entering the poroacoustic approxima-
tion used above are the undrained bulk modulus Ku , the drained
modulus of the skeleton K , the bulk modulus of the pore fluid K f ,

Figure 1. The coseismic electrical field and the coseismic (streaming) elec-
trical current. (a) The propagation of a compressional (pressure or P) wave
through a porous material generates areas of compression and dilation (ex-
pansion). (b) In response to the change in the mechanical stresses, the pore
water flows from the compressed regions to the dilated regions. (c) The
flow generates a streaming current density that is locally counterbalanced
by the conduction current density creating, locally, an electrical field E of
electrokinetic nature.

the shear modulus G (which is equal to the shear modulus of the
skeleton), the permeability at saturation kS and finally the dynamic
viscosity of the pore fluid η f . In unsaturated conditions, we will
need to expand these properties as a function of saturation.

2.2 Dynamic electrokinetic theory at saturation

The flow of the pore water drags the excess of charge contains
in the pore water generating a streaming current density (Figs 1b
and c). The electrical field associated with the passage of a seismic
wave through an electrical sensor is called the coseismic field. We
consider the occurrence of the associated electrical disturbances in
the quasi-static limit of the Maxwell equations as commonly done
in self-potential studies. Using the electrokinetic coupling model
developed by Revil & Linde (2006) and Revil et al. (2007), the
electric potential ϕ (in V) is obtained by solving the following
elliptic equations (see details in Jardani et al. 2010; Revil & Jardani
2010),

∇ · (σ∇ϕ) = ∇ · jS, (21)

where the electrical field is given by E = −∇ϕ in the quasi-static
limit of the Maxwell equations, σ (in S m−1) denotes the electrical
conductivity of the porous medium. The dynamic streaming current
density jS (in A m−2) is given by,

jS = Q̂V ẇ = − Q̂V kS

η f
∇ p, (22)

where ẇ denotes the Darcy velocity (volumetric flux of water) and
Q̂V denotes the effective charge per unit pore volume that is dragged
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Figure 2. The seismoelectric conversion (called sometimes the interface
response) results from the generation of an unbalanced source current den-
sity at an interface during the passage of a seismic wave. The divergence
of the source current density at the interface is mathematically similar to
an oscillating dipole moment generated at the interface in the first Fresnel
zone. The star represents the position of the seismic source.

by the flow of the pore water relatively to the solid phase. This
parameter is related to the permeability by log10 Q̂V = −9.2349 −
0.8219 log10 k0 (see Jardani et al. 2010; Revil & Jardani 2010; Revil
& Mahardika 2013). We neglect inertial terms, which is a pretty
good approximation if we are dealing with frequencies below 5 kHz
(see Revil & Mahardika 2013, for an example of calculation showing
the importance of the inertial terms). The electrical potential ϕ (in
V) is governed by the following Poisson equation:

∇ · (σ∇ϕ) = �, (23)

� ≡ ∇ · jS = −∇ ·
[

Q̂V kS

η f
∇(B P)

]
. (24)

Solving eqs (23) and (24) is required to understand the electrical
disturbance associated with the passage of a seismic wave through a
heterogeneity, such as an interface (Fig. 2). In this case, the electrical
field is called the seismoelectric conversion.

At saturation, the electrical conductivity of the porous material
is given by (Revil 2013),

σ = 1

F
σw +

(
1

Fφ

)
ρS β(+)(1 − f )CEC, (25)

where CEC denotes the Cation Exchange Capacity of the porous
material, β(+) denotes the mobility for the counterions in the diffuse
layer, F denotes the electrical formation factor and f (0 ≤ f ≤ 1)
denotes the partition coefficient of the counterions in the Stern layer
(fraction of counterions present in the Stern layer). The last term
of eq. (25) corresponds to conduction in the electrical diffuse layer
coating the surface of the grains and is called surface conductivity
σS in the literature (see Waxman & Smits 1968).

In summary, the properties entering the electrical problem are the
effective charge density Q̂V , the formation factor F and the surface
conductivity corresponding to the last term of eq. (25). These three
parameters will be explicitly related to the saturation in the next
sections.

2.3 Influence of saturation

We consider an unsaturated material with two immiscible fluid
phases: water that is considered the wetting phase for the solid
and a non-wetting and insulating fluid phase like air or oil. The
density of the pore fluid ρ f depends on saturation according to

ρ f = (1 − sw)ρg + swρw, where sw denotes the saturation of the
water phase, ρg and ρw denote the mass density of the gas (or oil)
and water phases, respectively. The undrained bulk modulus Ku, the
bulk modulus of the pore fluid Kf and the dynamic viscosity of the
pore fluid ηf are related to the properties of the gas (subscript g) and
water (subscript w) by the following relationships (e.g. Rubino &
Holliger 2012; Revil & Mahardika 2013):

Ku(sw) = K f (sw) (Ks − K ) + swφK
(
Ks − K f (sw)

)
K f (sw)(1 − φ − K/Ks) + φKs

, (26)

K f (sw) =
(

1 − sw

Kg
+ sw

Kw

)−1

, (27)

η f (sw) = ηg

(
ηw

ηg

)sw

, (28)

where eq. (27) corresponds to Wood’s formula (Wood 1930) and
eq. (28) can be found in Teja & Rice (1981). The Wood formula
is not valid at low seismic frequencies. Indeed, it neglects mass
conversion and heat transfer effects between fluid phases. Wood
formula assumed that the two fluid phases are ‘frozen’. For low gas
saturations, the bulk modulus of the two fluids mixture predicted by
the Wood model and the Landau–Lifshitz model (which accounts
for transfer between the fluid phases, e.g. condensation) is expected
to differ significantly. The saturation dependence of the Skempton
coefficient depends on the saturation dependence of Ku .

We consider that the capillary pressure is at equilibrium (the
deformation of the meniscus under the flow of the fluid phases is
neglected). The saturation can be related to the capillary pressure
by the Brook and Corey relationship,

sw =
{

sr + (1 − sr )
(

pe
pc

)λ

, pc ≥ pe

1, pc < pe

, (29)

or alternatively pc = pes−1/λ
e (or se = (pc/pe)−λ, pc ≥ pe, see eq.

(12) of Brooks & Corey 1964), where se = (sw − sr )/(1 − sr ) de-
notes the effective or reduced water saturation, sr the irreducible
water saturation, pc the capillary pressure and pe the capillary entry
pressure (critical pressure needed to displace the water phase by the
gas phase when the porous material is fully water saturated). The
entry pressure will be related to the permeability at saturation in
Section 3.

We need to determine now the effect of the saturation on the
electrical conductivity. We investigate here two models:

σ = 1

F
sn
wσw + sn−1

w σS (Model A), (30)

σ = 1

F
sn
wσw + σS (Model B), (31)

where n is called the saturation exponent (Archie 1942) and σS de-
notes the surface conductivity at saturation. Model A is discussed in
detail in Revil (2013) and was used for the seismoelectric problem
by Revil & Mahardika (2013). It is also consistent with the Waxman
& Smits (1968) model for unsaturated siliciclastic materials. The
saturation dependence of Model B was proposed for the seismo-
electric coupling in unsaturated conditions by Warden et al. (2013,
see their eq. 13).

The effect of saturation on the excess of electrical charges per unit
volume is taking by extending the empirical relationship between
these two parameters in unsaturated conditions (see Linde et al.
2007; Revil et al. 2007):

Q̂V (sw) = Q̂V

sw

. (32)
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This equation has been recently challenged by Jougnot et al.
(2012) but seems however to be consistent with experimental data
as checked by Linde et al. (2007), Revil et al. (2007) and Mboh
et al. (2012). We will show later that this model is also consistent
with the data from Guichet et al. (2003), Revil et al. (2011) and
Vinogradov & Jackson (2011).

3 A D D I T I O NA L S C A L I N G
R E L AT I O N S H I P S

3.1 Relative permeability

In this section, we developed a unified set of scaling relationship
between the hydraulic and electrical properties in order to reduce
the number of input parameters. Three scaling laws are developed
below, one for the relative water permeability, one for the capillary
entry pressure and one for the streaming potential coupling coeffi-
cient. For each new scaling law, we will show that it is in agreement
with existing experimental data or empirical scaling laws based on
fitting experimental data.

The first type of scaling concerns the relationship between the
electrical conductivity and the permeability. It is customary to define
the following canonical boundary value problem for the normalized
potential � for a cylindrical representative elementary volume of
porous material of length L (see Pride 1994),

∇2� = 0 in Vp, (33)

n̂ · ∇� = 0 on S, (34)

� =
{

L at z = L

0 at z = 0
on S, (35)

and where z denotes the position along the cylindrical representa-
tive elementary volume in its axial direction. In these equations, n̂
denotes the unit vector normal to the pore water/mineral interface
S and Vp corresponds to the pore volume. The boundary conditions
defining the normalized potential � are representative for the in-
jection of an electrical current into a rock sample in the absence
of surface conduction along the pore/water interface (see Johnson
et al. 1986; Avellaneda & Torquato 1991; Pride 1994). The dynamic
pore radius � and the formation factor F are defined as (Johnson
et al. 1986):

2

�
=

∫
S |∇�|2 dS∫

Vp
|∇�|2 dVp

, (36)

1

F
= 1

V

∫
Vp

|∇�|2 dVp, (37)

where V is the total volume of the considered representative el-
ementary volume. The length scale � corresponds, therefore, to
a weighted version of the hydraulic pore radius Vp/S weighted by
the norm of the electrical field (normalized by the electrical field
imposed from the boundary of the material) and, therefore, � can
be seen as the characteristic pore size of the porous body. From
eq. (37), 1/F appears as dynamic porosity as discussed by Revil &
Cathles (1999).

Using a volume-averaging approach, Johnson et al. (1986) and
Pride (1994) developed the following equation for the electrical
conductivity for a water-saturated rock:

σ = 1

F

(
σw + 2

�
�S

)
, (38)

where � is the characteristic pore length scale defined above. The
extension of this equation to unsaturated conditions is discussed in
the Appendix.

A comparison with eqs (30) and (31) with eq. (38) implies that
following scaling laws for the dependence of the formation factor
and length scale � with the relative water saturation,

F ⇔ Fs−n
w , (39)

� ⇔ �sw (Model A), (40)

� ⇔ �sn
w (Model B), (41)

where n denotes the second Archie’s exponent also called the satura-
tion exponent (Archie 1942). The left side of eqs (39)–(41) indicates
the parameters used to compute the electrical conductivity in fully
saturation conditions, and on the right side, we have the scaling of
the same parameters with saturation for unsaturated materials.

The permeability k is related to the formation factor F and the
dynamic pore radius � by (Johnson et al. 1986):

k0(sw) = �(sw)2

8F(sw)
. (42)

Therefore, the permeability should scale with the water saturation
as,

k0(sw) = �2

8F
s2+n
w (Model A), (43)

k0(sw) = �2

8F
s3n
w (Model B). (44)

Therefore, according to this scaling the permeability can be com-
puted as the product of the permeability at saturation kS = �2/8F
and a relative permeability that depends only on the relative water
saturation:

k0(sw) = kSkr (sw), (45)

with

kr (sw) = sn+2
e (Model A), (46)

kr (sw) = s3n
e (Model B), (47)

where we used the effective water saturation se rather than the water
saturation to enforce the fact that the relative permeability is null at
the irreducible water saturation. These equations can be compared
to the equations proposed by Li & Horne (2005, their eqs 5 and 6)
kr (sw) = sesn

w . In the Brooks & Corey (1964) model, the relative
permeability is also given by a power law relationship (see also
Purcell 1949),

kr (sw) =
(

pc

pe

)−2−3λ

= sr
e , (48)

r = 2 + 3λ

λ
, (49)

where λ is called the pore size distribution index. Therefore, we
identify the following equalities

λ = 2

n − 1
, r = n + 2 (Model A), (50)

λ = 2

3(n − 1)
, r = 3n (Model B). (51)

This result is very important because it provides an explicit rela-
tionship between a hydraulic parameter and an electrical parameter.
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Figure 3. Comparison between Models A and B used to predict the value
of the Books and Corey exponent l from the saturation exponent. Data from
Jougnot et al. (2010), Revil et al. (2007), Brooks & Corey (1964), Maerefat
& Chang (1987) (value extrapolated at ambient pressure and 25 oC) and
Jun-Zhi & Lile (1990). The Shannon sandstone is also known under the
term ‘Hygiene sandstone’ in the literature. For the Berea sandstone, the data
of Maerefat & Chang (1987; their fig. 3) yield a very similar value than
those of Jun-Zhi & Lile (1990) when extrapolated at 25 oC and ambient
pressure. The data seem to favour Model A over Model B but more data are
needed to test the models.

To our knowledge, this is the first time that these relationships are
proposed despite some attempts to connect the resistivity index and
the capillary pressure curves (see for instance Li & Horne 2005).

In Fig. 3, we have plotted a number of experimental data from
the literature in terms of the Brooks and Corey exponent versus
the saturation exponent. Note that both in the case of the data of
Maerefat & Chang (1987) and those of Jun-Zhi & Lile (1990), we
plotted the corresponding saturation exponent as functions of the
Brooks and Corey parameter taken from Brooks & Corey (1964) for
the Shannon and Berea sandstones both characterized by a narrow
porosity range. Fig. 3 shows that Model A seems to agree better
than Model B with experimental data but more data are needed
to check the predictive capabilities of the two models. These new
relationships also mean that the measurement of the second Archie’s
exponent can be used to predict the capillary pressure curve and
hysteretic behaviour in the capillary pressure curve should imply a
hysteretic behaviour in the value of n.

3.2 Capillary entry pressure

We now turn our attention to the capillary entry pressure. The
capillary entry pressure is usually given by (Katz & Thompson
1987),

pe = 2γ

rc
, (52)

where γ represents the surface tension between water and air
(71.99 ± 0.05) × 10−3 N m−1 and rc represents the smallest pore of

Figure 4. Comparison between the model proposed in the main text for
the capillary entry pressure assuming that the formation factor is related
to the porosity by F = φ−2 (classical Archie’s law, Archie 1942). The
experimental data are from Huet et al. (2005). They correspond to 89 sets
of mercury-injection (Hg–air) capillary pressure data. Core samples include
both carbonate and sandstone lithologies. The permeability is expressed in
mD.

the set of largest pore percolating through the porous material (Katz
& Thompson 1987). Katz & Thompson (1987) also developed a re-
lationship between the permeability and the percolation length scale
rc using percolation principles: kS = r 2

c /(226F). A comparison with
kS = �2/8F yields rc ≈ 5.3 �. Using the relationship between the
length scale rc and the permeability at saturation, kS = r 2

c /(226F),
together with eq. (52), we obtain,

pe = 2γ√
226F

k−0.5
S . (53)

This equation can be compared to the empirical equation derived by
Thomas et al. (1968), pe = 52k−0.43

S , with pe expressed in kPa and
kS in mD. Archie’s law F = φ−m can be used to compute F from the
porosity and the cementation exponent. Taking m = 2.0 (a default
value for sandstones, see Revil et al. 1998, their fig. 5) and a porosity
φ = 0.20 (a reasonable average value), we obtain pe = a k−0.5

S with
a = 61 with pe expressed in kPa and kS in mD. We also obtain pe =
bφ/

√
kS . The proportionality between the capillary entry pressure

and the ratio φ/
√

kS is checked in Fig. 4. Therefore, eq. (53) is able
to represent data but accounts explicitly for the porosity dependence,
which is not the case of the empirical equation developed by Thomas
et al. (1968).

3.3 Relative coupling coefficient with the Brooks
and Corey model

The last coefficient we want to test is the streaming potential cou-
pling coefficient, which can be defined for a fully water-saturated
material as (Revil & Mahardika 2013),

C0 = lim
ω→0

(
∂ψ

∂p

)
jS=0

= Q̂V k0

ηwσ
. (54)
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Figure 5. Comparison between Models A and B to predict the value of the
relative streaming potential coupling coefficient as a function of the water
saturation. We use an irreducible water saturation sr = 0.2. Data from Revil
et al. (2011), Vinogradov & Jackson (2011) and Guichet et al. (2003). The
data seem to favour Model A over Model B.

At high salinity, the conductivity can be approximated by,

σ ≈ 1

F
sn
wσw. (55)

We can now evaluate the effect of water saturation upon the stream-
ing potential coupling coefficient by substituting inside eq. (54)
the volumetric charge density, the permeability and the electrical
conductivity by their expressions in function of the saturation. We
obtain,

C0 = Cr CS, (56)

where Cr denotes the relative coupling coefficient (a concept first
introduced by Revil & Cerepi 2004) and where the streaming po-
tential coupling coefficient at saturation is given by,

CS = Q̂V k0

ηwσ
. (57)

If eq. (57) is multiplied by ρwg (g being the acceleration of the
gravity in m s−2), the coupling coefficient is expressed in V m−1.
The relative streaming potential coupling coefficient is given by,

Cr ≈ se (Model A), (58)

Cr = s2n−1
e (Model B). (59)

In Fig. 5, we compare the two models to the existing data replacing
the water saturation by the irreducible saturation to satisfy to the
additional constrain that there is no flow at the irreducible water
saturation. Very clearly, Model B is unable to explain these data.

Note that the general form of the relative coupling coefficient
with the Brooks and Corey model is,

Cr = s−(n+1)
w s3+2/λ

e , (60)

as proposed by Revil et al. (2007, their eq. 112). In the next section,
we will see how this equation needs to be modified if we use the
Van Genuchten model, instead of the Brooks and Corey model, to
represent the capillary pressure curve

Table 1. Petrophysical properties of the samples discussed in the main text.
M corresponds to the sand sample investigated by Mboh et al. (2012) while
samples E3 and E39 are dolomitic samples investigated by Revil et al.
(2007).

Property Symbol M E3 E39

Saturation exponent n (–) 1.87 2.7 3.5
Cementation exponent m (–) – 1.93 2.49
Permeability k (m2) 8.4 × 10−12 48.4 × 10−15 23.8 × 10−15

Porosity φ (–) 0.41 0.203 0.159
Residual saturation sr (–) 0.09 0.31 0.34
Grain size d (µm) 160 – –
Pore size r (µm) – 1.18 0.17

3.4 Relative coupling coefficient with the Van Genuchten
model

An alternative to the Brooks and Corey model is the Van Genuchten
(1980) model (see discussion in Linde et al. 2007; Revil et al. 2007).
This model can be written as,

se =
(

1 +
∣∣∣∣ pc

pe

∣∣∣∣
nv

)−mv

with mv ≈ 1 − 1

nv

, pc ≥ pe, (61)

kr (sw) ≈ √
se

[
1 − (1 − s1/mv

e )mv
]2

, (62)

where nv and mv are the Van Genuchten exponents. Therefore, the
coupling coefficient is,

Cr = s−(n+1)
w

√
se

[
1 − (1 − s1/mv

e )mv
]2

. (63)

Mboh et al. (2012) measured the relative streaming potential cou-
pling coefficient of a clean silica sand characterized by the following
properties: 99.3 per cent silica, porosity φ = 0.41, hydraulic con-
ductivity K = 8.25 × 10−5 m s−1, mean grain diameter d = 160 µm
(Table 1). Their data are exceptionally good in terms of quality. It
is indeed difficult to get very good data in unsaturated conditions
because of the drift of the electrodes (see discussions in Revil &
Linde 2011 and Jougnot & Linde 2013 for the drift associated with
saturation effects and Petiau & Dupis 1980 and Petiau 2000, for
other sources of noises). Their column was equipped with 10 non-
polarizable Ag/AgCl electrodes and six T5 tensiometers and the
acquisition were done at 1 kHz.

Mboh et al. (2012) measured a coupling coefficient at saturation
of C = –3.3 mV m−1 for a pore water conductivity (tap water) of
σ w = 0.044 S m−1 at 25oC. The second Archie exponent (Saturation
exponent) was measured and found to be equal to n = 1.87. The
Van Genuchten exponent was measured and was found to be equal
to nv = 3.88 (by fitting the capillary pressure curve). This yields
mv = 0.74. A comparison between the data of Mboh et al. (2012) and
eq. (62) is shown in Fig. 6. The best fit of the data yields mv = 0.69 ±
0.05; therefore, very close to the value determined from the capillary
pressure curve (Fig. 6). As mentioned by Mboh et al. (2012), this
implies that the values of the relative coupling coefficient bears
information regarding the Van Genuchten parameters as suggested
by Linde et al. (2007) and Revil et al. (2007).

In Figs 7 and 8, we reanalysed the data presented in Revil &
Cerepi (2004) and Revil et al. (2007) correcting few mistakes in
the unit conversions found in these two papers. We analysed the
streaming potential coupling coefficient data of samples E3 and E39
(dolomitic limestones, see properties in Table 1). In both cases, the
second Archie exponent (saturation exponent) was independently
determined using resistivity measurements. The Van Genuchten
parameters were found to be roughly the same using the capil-
lary pressure curves and the relative streaming potential coupling
coefficient data.
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Figure 6. Comparison between experimental data and the prediction of the model developed by Revil et al. (2007) with the Van Genuchten model (see also
Linde et al. 2007). The experimental data are from Mboh et al. (2012) (sample M, sand). Left panel: Relative streaming potential coupling coefficient versus
saturation. We used the measured value of the saturation exponent (second Archie exponent) n = 1.87. Right panel: Capillary pressure curve (non-wetting
fluid: air).

Figure 7. Comparison between experimental data and the prediction of the model developed by Revil et al. (2007) with the Van Genuchten model (see also
Linde et al. 2007). The experimental data are from Revil & Cerepi (2004) and Revil et al. (2007) (sample E3). Left panel: Absolute and relative streaming
potential coupling coefficient versus saturation. We used the measured value of the saturation exponent (second Archie exponent) n = 2.7. Right panel: Fit of
the capillary pressure curve with the same Van Genuchten parameters than obtained for the coupling coefficient (non-wetting fluid: mercury).

4 S E I S M O E L E C T R I C B E A M F O R M I N G
I N T H E P O ROA C O U S T I C
A P P ROX I M AT I O N

4.1 Motivation

We apply here the seismoelectric beamforming approach devel-
oped recently by Sava & Revil (2012) to localize a disconti-
nuity in resistivity associated with a water saturation front. We

consider a 2-D case where we modelled a background porous ma-
terial with constant mechanical, hydraulic and electrical properties.
Two rectangular heterogeneities (Anomalies 1 and 2) are embedded
in this background as shown in Fig. 9. The background and the two
anomalies share the same mechanical properties and only their hy-
draulic and electrical properties differ from one to another because
of a change in saturation (the material properties are reported in
Table 2). The background is supposed to be fully water saturated
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Figure 8. Comparison between experimental data and the prediction of the model developed by Revil et al. (2007) with the Van Genuchten model (see also
Linde et al. 2007). The experimental data are from Revil & Cerepi (2004) and Revil et al. (2007) (sample E39). Left panel: Absolute and relative streaming
potential coupling coefficient versus saturation. We used the measured value of the saturation exponent (second Archie exponent) n = 3.5. Right panel: Fit of
the capillary pressure curve with the same Van Genuchten parameters than obtained for the coupling coefficient (non-wetting fluid: mercury).

Figure 9. Geometry used for the beamforming problem. The medium consists of a homogeneous background model (reference model, fully saturated) plus
two anomalies termed Anomaly 1 and Anomaly 2. These anomalies correspond to areas that are unsaturated (see Table 2). The survey area is surrounded by
two vertical wells located on each side. The red triangles correspond to the location of the seismic sources/geophones/electrodes. The spacing between two
consecutive sensors is 5 m. The two boreholes have 19 seismic set of sensors each and 8 additional set of sensors are located close to the ground surface (5 m
deep). The two red-filled circles correspond to the focusing points used for our numerical experiments. Ei corresponds to the position of electrode i. They are
46 set of sensors in total with E1 and E46 are at the bottom of the two wells.

(electrical conductivity of 1 S m−1) while the anomalies are more
resistive (10−2 S m−1 for Anomaly 1 and 10−3 S m−1 for Anomaly 2
corresponding to two distinct saturations).

Seismic sources are located in two boreholes. The seismic sources
(virtual geophones, seismic sources and electrodes) are set-up ev-
ery 5 m along the ground surface and in the two wells (see Fig. 9,
19 sources in each well and 8 sources along the ground surface).
Our objective is to beamform seismic waves at two specific points

(positions A and B, see Fig. 9) and see if a seismoelectric con-
version can be recorded by electrodes located in the wells in pres-
ence of a saturation front. When the seismic energy focuses on a
heterogeneity, such as an interface, we expect to record a seismo-
electric conversion (interface response). If we scan various points,
this technique enables us to identify whether the point of focus is
located close to a saturation front or not. The numerical experi-
ment described below uses the acoustic approximation discussed in
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Table 2. Petrophysical properties for the background and Anomalies 1 and 2.

Property Background Anomaly 1 Anomaly 2

Undrained bulk modulus Ku (Pa) 22 × 109 22 × 109 22 × 109

P-wave velocity Vp (m s−1) 3093 3093 3093
Excess charge density Q̂V (C m−3) 0.20 2.0 6.7
Log (permeability, k in m2) –12 –14 –16
Skempton coefficient B 0.65 0.65 0.65
Average density ρ (kg m−3) 2300 2300 2300
Hydraulic viscosity of pore fluid β f (Pa s) 10−3 10−3 10−3

Conductivity σ (S m−1) 1 0.01 0.001
Saturation sw (–) 1 0.10 0.03

Figure 10. Pressure source f (r, t) (see eqs 12 and 13) used for the beamforming experiment. The pressure source is a Ricker wavelet with a 500 Hz dominant
frequency and a time-shift of 5 ms. (a) Pressure time-series of the source. (b) Amplitude spectrum of the source.

Section 2 above. We solved the partial differential equations for the
mechanical and electrical problems in the frequency domain.

4.2 Beamforming technique

The beamforming technique enables us to focus seismic energy at
a desired location and at a known time knowing approximately the
velocity model. As discussed in Sava & Revil (2012), the velocity
model does not need to be perfectly known. The seismic beamform-
ing is done in two steps:

Step 1: On a finite-element grid, we choose the point of focus
and we insert a fictitious seismic point source at this location. The
seismic source is a Ricker wavelet with a dominant frequency of
500 Hz (Fig. 10). It contains energy up to about 1500 Hz. Using
a constant seismic P-wave velocity of 3100 m s−1, we obtain a
dominant wavelength of 6.2 m and a minimum wavelength of 2 m.
That gives us a seismic resolution of 1.55 and 0.51 m, respectively.
All numerical modellings were performed using the finite element
package Comsol Multiphysics 4.3b using triangular meshing of
non-constant element size (minimum element size of 0.0024 m and
maximum element size of 1.2 m). This choice was driven by the need
to have five elements of mesh per wavelength. In order to model
the study areas without any seismic reflection at the boundaries
(infinite medium), we used the CPML (convoluted perfect matched
layer) developed by Jardani et al. (2010). The thickness of the
CPML is 10 m around the area of interest. The seismic P waves

are propagated from the source to fictitious electrodes located in
place of the true seismic sources in the wells and along the ground
surface. For one shot, we record the macroscopic pressure field Pi(t)
at each geophone i located in the wells.

Step 2: Once the pressure fields have been recorded at each geo-
phone, we back propagate the pressure fields as shown in Fig. 11. We
first flip the signal recorded at each geophone (Pshifted(t) = Precorded

(T – t), where T is the total recording time or listening time). We
then create seismic point sources located at the position of the vir-
tual geophones and we reinject the flipped seismic signals into the
medium. Those flipped outgoing pressure fields will then propagate
and interfere constructively at the original location (where we first
put the seismic source, see Fig. 11). During this back propagation,
we record the electrical potential at the wells and along the ground
surface at the 46 electrodes colocated with the seismic source.

The strength of this technique comes from the fact that we know
exactly at what time and what location the seismic wavefields will
focus and interfere constructively. If the point of focus is located
on an interface, we will record an interface response with a greater
amplitude that we would have recorded if there was only one wave-
field crossing the interface. In fact, the electric potential diffused by
a seismoelectric conversion due to a discontinuity in the medium
properties is usually orders of magnitude smaller than the coseismic
field (electrical field giving rise to an electrical13 potential only de-
tectable inside the support of a seismic wave). An example is shown
in Fig. 11(f) showing the dipolar field created by the beamforming of
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Figure 11. Seismic beamforming and resulting electrical potential distribution. (a)–(e). Snapshots showing the pressure field (coming from the 46 seismic
sources shown in Fig. 9) focusing at point A. At t = 27 ms, the wavefield interfere constructively in point A and a strong seismoelectric is recorded at the
receiver electrodes. (f) The distribution of the electrical potential (arbitrary units) corresponds to the case where the seismic energy is focused at point A. The
seismoelectric conversion at the time of focusing is characterized by a strong dipolar behaviour.

the seismic waves at point A. This technique forces the interface re-
sponse conversion to increase in amplitude due to the focusing of the
different pressure fields coming from the multiple seismic sources.

By applying this technique to a grid of points within the survey
area (by scanning the area point by point), we can then use the
electrical response to map the discontinuities in terms of electrical
and hydraulic properties of the material. We can also adjust and
increase the resolution of our mapping by scanning over a denser
grid of points around certain areas.

4.3 Results and interpretations

We focus seismic energy on few points of interests and we record
the potential with 46 electrodes (19 in each borehole and 8 along

the ground surface). The first point of focus (point A, see Figs 9 and
11) is located at an interface with a sharp discontinuity in conduc-
tivity and permeability. Therefore, we expect to see a seismoelectric
conversion. Our results confirmed this assumption (Fig. 12). How-
ever, we need to remove the distribution of potential recorded with
only the background to see the seismoelectric conversion associated
with the interface response. We can clearly see that the dominant
spike in the electric potential time-series (background removed)
is perfectly synchronized with the focusing time of the seismic
wavefield at point A. This enables us to detect a heterogeneity at
point A.

Fig. 13 shows the electric potential at an electrode located at
electrode E45 when the seismic wave are focused at point B, which
is not located close to an interface. As expected, we see no spike at
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Figure 12. Beamforming at point A. (a) Time-series of the electrical potential at electrode E35 for beamforming the seismic wave at point A. The time-series
comprise both the seismoelectric conversions and the coseismic field. The interface response is not detectable. (b) Electrical potential recorded when the
medium contains the two anomalies minus the potential recorded if we only had the background. The interface response is now clearly visible. (c) Time-series
of the pressure field at point B, P(A, t).

Figure 13. Beamforming at point B. (a) Time-series of the electrical potential at electrode E45. The time-series show both the seismoelectric conversions and
the coseismic field. The interface response is not detectable. (b) Difference of two time-series: the electric potential in the top graph minus the electric potential
recorded at the same location but for a homogeneous background (reference model). There is no conversion, which is consistent with the fact that point B is
not associated with a heterogeneity. (c) Time-series of the pressure field at point B, P(B, t).
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Figure 14. Sketch of the domain used for the modelling. The total modelling domain is a 410 m × 250 m rectangle. Injector Well A is used, located at position
x = 0 m, is also used for the seismic source. Production and recording Well B is located at x = 250 m. The discretization of the domain comprises a finite
element mesh of 205 × 125 rectangular cells. A total of 28 receivers are located in Well B, approximately 30 m away from the nearest PML boundary (the
PML boundary layers are shown in grey).

the focus time, which indicates a lack of heterogeneity at the focus
point. Therefore, this method can be used in time lapse to follow
the evolution of a saturation front over time, for example, for CO2

sequestration or to monitor water flooding experiments.

5 A P P L I C AT I O N T O WAT E R F L O O D I N G

In this section, we apply the approach taken in Section 4 to a more
realistic scenario. A lot of work has been done recently in using
low-frequency electrical signals to detect oil–water encroachment
fronts (see, for instance, Saunders et al. 2008). We want to see if
seismoelectric beamforming can be used to localize in a very simple
way the position of the front. We consider two wells crossing a
heterogeneous reservoir (see Fig. 14). Well B is located 250 m away
from Well A and the total geometry of the model covers an area of
410 × 250 m. The reference position, O(0,0), is located at the upper-
left corner of this domain. The reservoir is initially saturated with
oil (oil saturation of 80 per cent). During water flooding operations,
water is injected in Well A and oil is produced in Well B.

We use a random simulator to create a stochastic realization for
the clay content and we use the model of Revil & Cathles (1999)
to determine the porosity and the permeability at saturation. The
multiphase flow simulator allows computing the saturation profiles,
which are used to compute the P-wave velocity and resistivity dis-
tributions. The P-wave velocity and the permeability of the water
phase are shown in Fig. 15 for snapshot 3, while the electrical con-
ductivity and the porosity are shown in Fig. 16. The P-wave velocity
does not depend too much on the saturation and its distribution is
comprised between 4050 and 4300 m s−1. The electrical conductiv-
ity distribution varies over an order of magnitude. The influence of
the water saturation is much greater on the resistivity than on the
P-wave velocity.

The seismic source is a Ricker wavelet (magnitude 1.0 × 104

N m, delay time ts = 30 ms, dominant frequency fc = 160 Hz).
We solve the poroacoustic equations described in Section 2 and the
Poisson equation for the electrical potential in the frequency do-
main. The material properties are described in Table 3. In summary,

Table 3. Material properties used in the saturation
front detection. We use Model A with m = n = 2.

Parameter Value Units

ρs 2650 kg m−3

ρw 1000 kg m−3

ρo 900 kg m−3

Ks 36.5 GPa
K 18.2 GPa
G 13.8 GPa
Kw 2.25 GPa
Ko 1.50 GPa
ηw 1 × 10−3 Pa s
ηo 50 × 10−3 Pa s

we compute the properties distributions given the porosity, fluid
permeability and saturation distributions, then we solve for the con-
fining pressure P(r, t) of the solid phase and the pore fluid pressure
p(r, t). Finally, we compute the electrical potential by solving the
Poisson equation coupled to the poroacoustic problem for the fre-
quency range 8–800 Hz. This range is valid for our problem since
the seismic wave and the associated electrical field operates in the
same frequency range. We then compute the inverse Fourier trans-
form (FFT−1) to get the time-series of the seismic displacements ux

and uz, and the time-series of the electric potential response.
The mesh is made of cell 2 × 2 m. The size of the mesh is smaller

than the smallest wavelength of the seismic wave. For this mesh
size, we check that the solution of the partial differential equations
governing the seismoelectric problem is mesh independent. At the
four external boundaries of the domain, we apply a 50-m-thick
CPML.

Fig. 17 shows a pure transmission experiment between a seismic
source located in Well A and an electrical receiver located in Well B.
We also record the fluid pressure at the first Fresnel zone of the
seismic wave at the position of the saturation front. Fig. 17 shows
the existence of a strong seismoelectric conversion at the saturation
front. This confirms the results of Revil & Mahardika (2013), who
used a poroelastic theory.
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Figure 15. Sketch of the distribution of the P-wave velocity and permeability of the pore water phase at snapshop 3. Note that the saturation front is
characterized by a sharp contract in permeability.

Figure 16. Sketch of the distribution of the electrical conductivity and porosity at snapshop 3. Note that the saturation front is characterized by a sharp contract
in electrical conductivity.
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Figure 17. Transmission experiment with the seismic source in Well A and the electrical receiver in Well B. (a) Geometry of the test. (b) Time-series for the
electrical potential showing the seismoelectric conversion occurring at the interface (like in Fig. 2) and the coseismic field (like in Fig. 1). (c) Fluid pressure
field at a point located at the saturation front at the centre of the Fresnel zone.

Figure 18. Seismic beamforming at the saturation front and resulting electrical potential distribution. (a)–(e) Evolution of the confining pressure P(r,t) for
five snapshots. The propagating wavefields interfere constructively at the focus point. (f) Electrical potential distribution corresponding to the seismic energy
focused at the saturation front (snapshot e).
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Figure 19. Determination of the position of the oil–water interface using
a set of beamforming points at the same depth and crossing the position
of the interface. (a) Spatial distribution of the water saturation (snapshot
#3) showing the position of the saturation front. (b) Electrical conductivity
distribution. (c) Source intensity as a function of offset. This shows that
the strongest seismoelectric conversions are generated at the position of the
saturation front.

Encouraged by this result, we apply now the seismoelectric beam-
forming discussed in Section 4 to this case. Figs 18(a)–(e) show the
seismic beamforming using the seismic sources located in three
wells. Fig. 18(f) shows the resulting electrical potential distribution
at the time for which the seismic energy is beamformed. This shows
a very strong dipolar field associated with the beamforming.

In Fig. 19, we repeat this operation for a set of scanning pints
located at the same depth and crossing the position of the saturation
front. Our analysis shows that the strongest seismoelectric conver-
sion is located at the position of the saturation front. Therefore, we
can conclude that the scanning of the reservoir could be used to
determine the position of the saturation front and to monitor its pro-
gression over time. An application of the present theory to a vadose
zone case study is also developed in a companion paper (Kulessa
et al. 2013).

6 C O N C LU S I O N S

We have developed a simple theory to compute seismoelectric
effects in unsaturated conditions. This theory is based on the
model of wave propagation in unsaturated media following a
straightforward extension of Biot theory that is well accepted.
We also developed an even simpler approach based a poroa-
coustic theory that is also used to compute P waves in partially
saturated porous media. The electrokinetic part of the model is
also consistent with available experimental observations in the
laboratory.

The poroacoustic approach is implemented in a finite-element
solver with triangular meshing. The capabilities of the forward mod-
elling solver are shown in two cases. The first case is to perform
seismic beamforming to localize the presence of heterogeneities in
the saturation for a piecewise constant distribution of saturation.
The second case corresponds to an enhanced oil-recovery problem.
Water is injected in one well and oil is produced in the second well.
We show that the seismoelectric method can be used to localize the
saturation front using the beamforming approach proposed recently
by Sava & Revil (2012). By focusing seismic energy at a given
point, we sharply increase the amplitude of the seismoelectric inter-
face response (seismoelectric conversion) with respect to coseismic
fields. This is extremely important because, most of the time, the
coseismic signals are much stronger, in terms of amplitude, and the
seismoelectric conversion barely detectable.

A C K N OW L E D G E M E N T S

Funding was provided by the Petroleum Institute of Abu Dhabi. We
thank Seth Haines for fruitful discussions and Junwei Zhang for the
two-phase flow simulations. Dr. T.K. Young is also thanked for his
support at Mines. We thank the Editor Jeannot Trampert, J. Germán
Rubino and an anonymous referee for their constructive comments.

R E F E R E N C E S

Alkhalifah, T., 1998. Acoustic approximations for processing in transversely
isotropic media, Geophysics, 63, 623–631.

Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media,
Geophysics, 65, 1239–1250.

Alkhalifah, T., 2003. An acoustic wave equation for orthorhombic
anisotropy, Geophysics, 68, 1169–1172.

Araji, A.H., Revil, A., Jardani, A., Minsley, B.J. & Karaoulis, M., 2012.
Imaging with cross-hole seismoelectric tomography, Geophys. J. Int.,
188, 1285–1302.

Archie, G.E., 1942. The electrical resistivity log as an aid in determining
some reservoir characteristics, Trans. Am. Inst. Min. Metall. Pet. Eng.,
146, 54–62.

Avellaneda, M. & Torquato, S., 1991. Rigorous link between fluid perme-
ability, electrical conductivity, and relaxation times for transport in porous
media, Phys. Fluids A, 3, 2529–2540.

Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid saturated
porous solid. I. Low frequency range, J. acoust. Soc. Am., 28, 168–178.

Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid saturated
porous solid. II. Higher frequency range, J. acoust. Soc. Am., 28, 179–191.

Brooks, R.H. & Corey, A.T., 1964. Hydraulic Properties of Porous Media,
Hydrology Papers, No. 3, Colorado State University.

Fourie, F.D., 2003. Application of electroseismic techniques to geohydro-
logical investigations in Karoo Rocks, PhD thesis, University of the Free
State, Bloemfontein, South Africa, 195 pp.

Garambois, S. & Dietrich, M., 2002. Full waveform numerical simulations
of seismoelectromagnetic wave conversions in fluid-saturated stratified
porous media, J. geophys. Res., 107(B7), doi:10.1029/2001JB000316.
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A P P E N D I X : C O N D U C T I V I T Y I N
U N S AT U R AT E D C O N D I T I O N S

In the absence of an electrical double layer coating the surface of
minerals, the conductivity problem is governed at the local scale of
the pore space by:

j = −σw∇ψ in Vp, (A1)

∇ · j = 0 on S, (A2)

where e = −∇ψ denotes the local electrical field, ψ the local elec-
trical potential, Vp denotes the pore space and S the solid water
interface. In absence of surface conductivity, the boundary-value
problem for ψ is therefore given by

∇2ψ = 0 in Vp, (A3)

n̂ · e = 0 on S, (A4)

ψ =
{

�� at z = L

0 at z = 0
, (A5)

where L denotes the length of the cylindrical representative ele-
mentary volume (REV) in the direction of the macroscopic applied
electrical field E = −(��/L)z̃, �� denotes the difference of elec-
trical potential between the end-faces of the REV, n̂ is the unit vector
normal to the pore water/mineral interface S and Vp denotes the in-
terconnected pore volume. This boundary-value problem can be
rewritten in terms of a normalized electrical potential �:

∇2� = 0 in Vp, (A6)

n̂ · ∇� = 0 on S, (A7)

� =
{

L at z = L

0 at z = 0
, (A8)

where the normalized field and potential are written as,

∇� ≡
(

−��

L

)−1

e, (A9)

and

� ≡
(

��

L

)−1

ψ, (A10)

respectively. In absence of surface conductivity, the formation factor
F is obtained by summing up the Joule dissipation of energy over
the pore space,

σ

(
��

L

)2

= 1

V

∫
Vp

σw |e|2 dVp, (A11)

which yield the following relationship for the electrical conductiv-
ity

σ = 1

F
σw, (A12)

1

F
= 1

V

∫
Vp

|∇�|2 dVp, (A13)

where V is the total volume of the considered REV.
Revil & Glover (1997) extended the use of the Joule dissipation

theorem to the case of bulk and surface conduction. The macro-
scopic Joule dissipation of energy is the sum of all the Joule
dissipation contributions occurring at the microscopic scale in
both the bulk pore water and in the electrical double layer. This
yields,

σ ′
(

��

L

)2

= 1

V

∫
Vp

σw |e|2 dVp + 1

V

∫
S
�S |e|2 dS, (A14)

where �S describes the specific surface conductivity of the electrical
diffuse layer (in S) and e the local electrical field. At high salinity
(Dukhin number Du �1), the distribution of the electrical field is
nearly the same as in absence of surface conductivity and, therefore,
we have,

σ = 1

F

(
σw + 2

�
�S

)
, (A15)

2

�
=

∫
Vp

|∇�|2 dVp∫
S |∇�|2 dS

. (A16)

Now the third step is to extend the previous equations to the case
where the porous material is partially saturated by water. The sec-
ond phase, air, is insulating and therefore the air–water interface
is characterized by exactly the same boundary conditions than
for the water–solid interface. We can define the same boundary-
value problem for the normalized potential �w in the pore water
phase:

∇2�w = 0 in Vp, (A17)

n̂ · ∇� = 0 on S, (A18)

� =
{

L at z = L

0 at z = 0
, (A19)

where S includes now both the air–water and solid–water interfaces.
Now the same arguments as above, but taken for the water phase
rather than for the complete pore space yield

σ (sw) = 1

F(sw)

(
σw + 2

�(sw)
�S

)
, (A20)

2

�(sw)
=

∫
Vp

|∇�w|2 dVp∫
S |∇�w|2 dS

, (A21)

1

F(sw)
= 1

V

∫
Vp

|∇�w|2 dVp. (A22)

Like in the case of permeability, the properties �(sw) and F(sw) are
expected to be breakable into the product of a value at saturation
and a function of the saturation itself.
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