M. A. Aziz-alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, vol.16, issue.7, pp.1069-1075, 2003.
DOI : 10.1016/S0893-9659(03)90096-6

URL : https://doi.org/10.1016/s0893-9659(03)90096-6

N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, 1970.

B. I. Camara, Waves analysis and spatiotemporal pattern formation of an ecosystem model, Nonlinear Analysis: Real World Applications, vol.12, issue.5, pp.2511-2528, 2011.
DOI : 10.1016/j.nonrwa.2011.02.020

F. Chen, L. Chen, and X. Xie, On a Leslie???Gower predator???prey model incorporating a prey refuge, Nonlinear Analysis: Real World Applications, vol.10, issue.5, pp.2905-2908, 2009.
DOI : 10.1016/j.nonrwa.2008.09.009

G. , D. Prato, and H. Frankowska, Stochastic viability of convex sets, J. Math. Anal. Appl, vol.333, issue.1, pp.151-163, 2007.

M. , D. Okiye, and M. A. Aziz-alaoui, On the dynamics of a predatorprey model with the Holling-Tanner functional response, Mathematical modelling & computing in biology and medicine, pp.270-278, 2003.

N. Dalal, D. Greenhalgh, and X. Mao, A stochastic model for internal HIV dynamics, Journal of Mathematical Analysis and Applications, vol.341, issue.2, pp.1084-1101, 2008.
DOI : 10.1016/j.jmaa.2007.11.005

URL : https://doi.org/10.1016/j.jmaa.2007.11.005

F. Dumortier, J. Llibre, and J. C. Artés, Qualitative theory of planar differential systems. Universitext, 2006.

G. Ferreyra and P. Sundar, Comparison of solutions of stochastic equations and applications. Stochastic Anal, Appl, vol.18, issue.2, pp.211-229, 2000.

J. Fu, D. Jiang, N. Shi, T. Hayat, and A. Alsaedi, Qualitative analysis of a stochastic ratio-dependent Holling-Tanner system, Acta Mathematica Scientia, vol.38, issue.2, pp.38429-440, 2018.
DOI : 10.1016/S0252-9602(18)30758-6

F. R. Gantmacher, The theory of matrices. Vols. 1, 2. Translated by, 1959.

D. H. Gottlieb, A de Moivre like formula for fixed point theory, Contemp. Math, vol.72, pp.99-105, 1986.
DOI : 10.1090/conm/072/956481

URL : http://www.math.purdue.edu/~gottlieb/Papers/./bbrown.ps

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems , and bifurcations of vector fields, Applied Mathematical Sciences, vol.42, 1983.
DOI : 10.1115/1.3167759

C. Ji, D. Jiang, and N. Shi, Analysis of a predator???prey model with modified Leslie???Gower and Holling-type II schemes with stochastic perturbation, Journal of Mathematical Analysis and Applications, vol.359, issue.2, pp.482-498, 2009.
DOI : 10.1016/j.jmaa.2009.05.039

URL : https://doi.org/10.1016/j.jmaa.2009.05.039

R. Khasminskii, Stochastic stability of differential equations, volume 66 of Stochastic Modelling and Applied Probability

P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, vol.23

L. Liu and Y. Shen, Sufficient and necessary conditions on the existence of stationary distribution and extinction for stochastic generalized logistic system, Advances in Difference Equations, vol.25, issue.1, p.201510, 2015.
DOI : 10.1142/p473

URL : https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/s13662-014-0345-y?site=advancesindifferenceequations.springeropen.com

Z. Liu, Stochastic dynamics for the solutions of a modified Holling???Tanner model with random perturbation, International Journal of Mathematics, vol.14, issue.11, p.1450105, 2014.
DOI : 10.1016/j.amc.2011.08.037

J. Llibre and J. Villadelprat, A Poincaré index formula for surfaces with boundary, Differential Integral Equations, vol.11, issue.1, pp.191-199, 1998.

J. Lv and K. Wang, Analysis on a Stochastic Predator-Prey Model with Modified Leslie-Gower Response, Abstract and Applied Analysis, vol.37, issue.3, 2011.
DOI : 10.3934/dcds.2009.24.523

URL : http://doi.org/10.1155/2011/518719

J. Lv and K. Wang, Asymptotic properties of a stochastic predator???prey system with Holling II functional response, Communications in Nonlinear Science and Numerical Simulation, vol.16, issue.10, pp.4037-4048, 2011.
DOI : 10.1016/j.cnsns.2011.01.015

T. Ma and S. Wang, A generalized Poincar?????Hopf index formula and its applications to 2-D incompressible flows, Nonlinear Analysis: Real World Applications, vol.2, issue.4, pp.467-482, 2001.
DOI : 10.1016/S1468-1218(01)00004-9

P. S. Mandal and M. Banerjee, Stochastic persistence and stability analysis of a modified Holling-Tanner model, Mathematical Methods in the Applied Sciences, vol.14, issue.10, pp.1263-1280, 2013.
DOI : 10.1016/j.chaos.2006.08.010

A. F. Nindjin, M. A. Aziz-alaoui, and M. Cadivel, Analysis of a predator???prey model with modified Leslie???Gower and Holling-type II schemes with time delay, Nonlinear Analysis: Real World Applications, vol.7, issue.5, pp.1104-1118, 2006.
DOI : 10.1016/j.nonrwa.2005.10.003

C. C. Pugh, A generalized poincar?? index formula, Topology, vol.7, issue.3, pp.217-226, 1968.
DOI : 10.1016/0040-9383(68)90002-5

URL : https://doi.org/10.1016/0040-9383(68)90002-5

H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, Graduate Studies in Mathematics, vol.118, 2011.
DOI : 10.1090/gsm/118