A. Miyata, A. Arimura, and R. Dahl, Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells, Biochemical and Biophysical Research Communications, vol.164, issue.1, pp.567-574, 1989.
DOI : 10.1016/0006-291X(89)91757-9

A. Miyata, L. Jiang, and R. Dahl, Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38), Biochemical and Biophysical Research Communications, vol.170, issue.2, pp.643-648, 1990.
DOI : 10.1016/0006-291X(90)92140-U

A. Arimura, 1992 Pituitary adenylate cyclase-activating polypeptide (PACAP): discovery and current status of research, Regul Pept, vol.37, pp.287-303

N. Chartrel, M. Tonon, H. Vaudry, and J. Conlon, Primary Structure of Frog Pituitary Adenylate Cyclase- Activating Polypeptide (PACAP) and Effects of Ovine PACAP on Frog Pituitary*, Endocrinology, vol.129, issue.6, pp.3367-3371, 1991.
DOI : 10.1210/endo-129-6-3367

S. Rawlings and M. Hezareh, 1996 Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: action on the anterior pituitary gland, Endocr Rev, vol.17, pp.4-29

J. Christophe, Type I receptors for PACAP (a neuropeptide even more important than VIP?), Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1154, issue.2, pp.183-199
DOI : 10.1016/0304-4157(93)90011-C

A. Arimura and S. Shioda, Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Its Receptors: Neuroendocrine and Endocrine Interaction, Frontiers in Neuroendocrinology, vol.16, issue.1, pp.53-88
DOI : 10.1006/frne.1995.1003

T. Ishihara, R. Shigemoto, K. Mori, K. Takahashi, and S. Nagata, Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide, Neuron, vol.8, issue.4, pp.811-819, 1992.
DOI : 10.1016/0896-6273(92)90101-I

E. Lutz, W. Sheward, K. West, J. Morrow, G. Fink et al., 1993 The VIP-2 receptor: molecular characterization of a cDNA encoding a novel receptor for vasoactive intestinal polypeptide, FEBS Lett, vol.33, pp.3-8

D. Spengler, C. Waeber, and C. Pantaloni, Differential signal transduction by five splice variants of the PACAP receptor, Nature, vol.365, pp.170-175, 1993.

M. Ghatei, K. Takahashi, Y. Suzuki, J. Gardiner, P. Jones et al., , 1993.

, Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues, J Endocrinol, vol.36, pp.159-166

L. Yon, M. Feuilloley, N. Chartrel, A. Arimura, A. Fournier et al., , 1993.

. Localization, characterization and activity of pituitary adenylate cyclase-activating polypeptide in the frog adrenal gland, J Endocrinol, vol.139, pp.183-194

A. Tabarin, D. Chen, R. Håkanson, and F. Sundler, Pituitary Adenylate Cyclase-Activating Peptide in the Adrenal Gland of Mammals: Distribution, Characterization and Responses to Drugs, Neuroendocrinology, vol.59, issue.2, pp.113-119
DOI : 10.1159/000126647

Y. Masuo, F. Tokito, Y. Matsumoto, N. Shimamoto, and M. Fujino, Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) and its binding sites in the rat brain, Neuroscience Letters, vol.170, issue.1, pp.43-46, 1994.
DOI : 10.1016/0304-3940(94)90234-8

I. Tatsuno, A. Somogyvari-vigh, and A. Arimura, Developmental changes of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor in the rat brain, Peptides, vol.15, issue.1, pp.55-60
DOI : 10.1016/0196-9781(94)90170-8

M. Basille, B. Gonzalez, P. Leroux, L. Jeandel, A. Fournier et al., Localization and characterization of PACAP receptors in the rat cerebellum during development: Evidence for a stimulatory effect of PACAP on immature cerebellar granule cells, Neuroscience, vol.57, issue.2, pp.329-338
DOI : 10.1016/0306-4522(93)90066-O

M. Basille, B. Gonzalez, A. Fournier, and H. Vaudry, Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: a quantitative autoradiographic study, Developmental Brain Research, vol.82, issue.1-2, pp.81-89, 1994.
DOI : 10.1016/0165-3806(94)90150-3

B. Gonzalez, M. Basille, D. Vaudry, A. Fournier, and H. Vaudry, Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts, Neuroscience, vol.78, issue.2, pp.419-430
DOI : 10.1016/S0306-4522(96)00617-3

H. Matsumoto, C. Koyama, and T. Sawada, Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3',5'-monophosphate and interleukin-6 secretion and cell proliferation., Endocrinology, vol.133, issue.5, pp.2150-2155, 1993.
DOI : 10.1210/endo.133.5.8404665

B. Shivers, T. Gö-rcs, and P. Gottschall, Two High Affinity Binding Sites for Pituitary Adenylate Cyclase-Activating Polypeptide Have Different Tissue Distributions*, Endocrinology, vol.128, issue.6, pp.3055-3065, 1991.
DOI : 10.1210/endo-128-6-3055

T. Watanabe, Y. Masuo, and H. Matsumoto, Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline, Biochemical and Biophysical Research Communications, vol.182, issue.1, pp.403-411, 1992.
DOI : 10.1016/S0006-291X(05)80159-7

K. Moller and F. Sundler, Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla, Regulatory Peptides, vol.63, issue.2-3, pp.129-139, 1996.
DOI : 10.1016/0167-0115(96)00033-X

M. Frö-din, J. Hannibal, B. Wulff, S. Gammeltoft, and J. Fahrenkrug, Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells, Neuroscience, vol.65, issue.2, pp.599-608
DOI : 10.1016/0306-4522(94)00522-7

A. Tischler, J. Riseberg, and R. Gray, Mitogenic and antimitogenic effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in adult rat chromaffin cell cultures, Neuroscience Letters, vol.189, issue.3, pp.135-138, 1995.
DOI : 10.1016/0304-3940(95)11472-9

N. Wolf and K. Krieglstein, Phenotypic development of neonatal rat chromaffin cells in response to adrenal growth factors and glucocorticoids: focus on pituitary adenylate cyclase activating polypeptide, Neuroscience Letters, vol.200, issue.3, pp.207-210, 1995.
DOI : 10.1016/0304-3940(95)12116-L

J. Winter, Fetal and neonatal adrenocortical development The adrenal gland, pp.159-189, 1992.

J. Bocian-sobkowska, L. Malendowicz, and T. Wozniak, 1993 Cytological aspects of the human adrenal cortex development in the course of intra-uterine life, Histol Histopathol, vol.8, pp.725-730

M. Cooper, G. Hutchins, and M. Israel, Histogenesis of the human adrenal medulla, Am J Pathol, vol.137, pp.605-615, 1990.

M. Ehrhart-bornstein, M. Breidert, and P. Guadanucci, 17??-Hydroxylase and Chromogranin A in 6th Week Human Fetal Adrenals, Hormone and Metabolic Research, vol.29, issue.01, pp.30-32, 1997.
DOI : 10.1055/s-2007-978976

N. Chartrel, J. Conlon, J. Danger, A. Fournier, M. Tonon et al., Characterization of melanotropin-release-inhibiting factor (melanostatin) from frog brain: homology with human neuropeptide Y., Proceedings of the National Academy of Sciences, vol.88, issue.9, pp.249-255, 1991.
DOI : 10.1073/pnas.88.9.3862

URL : http://www.pnas.org/content/88/9/3862.full.pdf

A. Laquerrière, P. Leroux, B. Gonzalez, C. Bodenant, R. Benoit et al., Distribution of somatostatin receptors in the brain of the frogRana ridibunda: Correlation with the localization of somatostatin-containing neurons, The Journal of Comparative Neurology, vol.49, issue.3, pp.451-467, 1989.
DOI : 10.1679/aohc1950.43.157

L. Yon, N. Chartrel, and M. Feuilloley, Pituitary adenylate cyclase-activating polypeptide stimulates both adrenocortical cells and chromaffin cells in the frog adrenal gland., Endocrinology, vol.135, issue.6, pp.2749-2758, 1994.
DOI : 10.1210/endo.135.6.7988467

G. Streeter, Weight, sitting height, head size, foot length and menstrual age of the human embryo, Contr Embryol, vol.11, pp.143-179, 1920.

P. Leroux, B. Gonzalez, C. Bucharles, and H. Vaudry, Autoradiography of Somatostatin Receptors in Rat Cerebellum, Methods Neurosci, vol.5, pp.538-553, 1991.
DOI : 10.1016/B978-0-12-185259-7.50038-7

L. Breault, J. Lehoux, and N. Gallo-payet, The angiotensin AT2 receptor is present in the fetal human adrenal gland throughout the second trimester of gestation, J Clin Endocrinol Metab, vol.81, pp.3914-3922, 1996.

N. Gallo-payet and M. Payet, Excitation-secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells, Journal of Endocrinology, vol.120, issue.3, pp.409-421, 1989.
DOI : 10.1677/joe.0.1200409

Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Analytical Biochemistry, vol.58, issue.2, pp.541-548
DOI : 10.1016/0003-2697(74)90222-X

N. Gallo-payet, G. Guillon, M. Balestre, and S. Jard, Vasopressin Induces Breakdown of Membrane Phosphoinositides in Adrenal Glomerulosa and Fasciculata Cells*, Endocrinology, vol.119, issue.3, pp.1042-1047, 1986.
DOI : 10.1210/endo-119-3-1042

W. Molenaar, V. Lee, and J. Trojanowski, Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins, Experimental Neurology, vol.108, issue.1, pp.1-9
DOI : 10.1016/0014-4886(90)90001-9

G. Mazzochi, L. Malendowicz, V. Meneghelli, G. Gottardo, and G. Nussdorfer, <b>VASOACTIVE INTESTINAL POLYPEPTIDE (VIP) STIMULATES HORMONAL SECRETION OF THE RAT ADRENAL CORTEX <i>IN VITRO</i>: EVIDENCE THAT ADRENAL CHROMAFFIN CELLS ARE INVOLVED IN THE MEDIATION OF THE MINERALOCORTICOID, BUT NOT GLUCOCORTICOID SECRETAGOGUE ACTION OF </b><b>VIP* </b>, Biomedical Research, vol.14, issue.6, pp.435-440, 1993.
DOI : 10.2220/biomedres.14.435

J. Hinson, M. Ho, G. Vinson, and S. Kapas, Vasoactive intestinal peptide is a local regulator of adrenocortical function, Endocrine Research, vol.512, issue.4, pp.831-838, 1996.
DOI : 10.1111/j.1749-6632.1987.tb24980.x

S. Bornstein, A. Haidan, and M. Ehrhart-bornstein, Cellular communication in the neuro-adrenocortical axis: role of vasoactive intestinal polypeptide (VIP), Endocrine Research, vol.1, issue.4, pp.819-829, 1996.
DOI : 10.1210/edrv-1-4-392

K. Isobe, T. Nakai, and Y. Takuwa, Ca(2+)-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal medullary chromaffin cells., Endocrinology, vol.132, issue.4, pp.1757-1765
DOI : 10.1210/endo.132.4.8384995

J. Pisegna and S. Wank, Cloning and Characterization of the Signal Transduction of Four Splice Variants of the Human Pituitary Adenylate Cyclase Activating Polypeptide Receptor, Journal of Biological Chemistry, vol.269, issue.29, pp.17267-17274, 1996.
DOI : 10.1210/en.132.4.1757

P. Marley, C. Cheung, K. Thomson, and R. Murphy, Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells, Journal of the Autonomic Nervous System, vol.60, issue.3, pp.141-146, 1996.
DOI : 10.1016/0165-1838(96)00044-6

G. Neri, P. Andreis, T. Prayer-galetti, G. Rossi, L. Malendowicz et al., 1996 Pituitary adenylate cyclase-activating polypeptide enhances aldosterone secretion of human adrenal gland: evidence for an indirect mechanism, probably involving the local release of catecholamines, J Clin Endocrinol Metab, vol.81, pp.169-173

N. Gallo-payet, P. Pothier, and H. Isler, On the presence of chromaffin cells in the adrenal cortex: their possible role in adrenocortical function, Biochemistry and Cell Biology, vol.65, issue.6, pp.588-592, 1987.
DOI : 10.1139/o87-076

S. Bornstein, J. Gonzalez-hernandez, M. Ehrhart-bornstein, G. Adler, and W. Scherbaum, Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions, J Clin Endocrinol Metab, vol.78, pp.225-232, 1994.

P. Deutsch, V. Shadlow, and N. Barzilai, 38-Amino acid form of pituitary adenylate cyclase activating peptide induces process outgrowth in human neuroblastoma cells, Journal of Neuroscience Research, vol.173, issue.3, pp.312-320, 1993.
DOI : 10.1091/mbc.3.8.941

D. Vaudry, B. Gonzalez, M. Basille, Y. Anouar, A. Fournier et al., Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway, Neuroscience, vol.84, issue.3, pp.801-812
DOI : 10.1016/S0306-4522(97)00545-9

P. Deutsch and Y. Sun, 1992 The 38-amino acid form of pituitary adenylate cyclaseactivating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth, J Biol Chem, vol.267, pp.5108-5113