E. Nelson, Clinical implications of neuroendocrine differentiation in prostate cancer, Prostate Cancer and Prostatic Diseases, vol.189, issue.76, pp.6-14, 2007.
DOI : 10.1016/S0303-7207(01)00728-6

H. Bonkhoff, Neuroendocrine cells in benign and malignant prostate tissue: Morphogenesis, proliferation, and androgen receptor status, The Prostate, vol.9, issue.S8, pp.18-22, 1998.
DOI : 10.1002/(SICI)1097-0045(1998)8+<18::AID-PROS4>3.0.CO;2-C

H. Bonkhoff, U. Stein, and K. Remberger, Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells*1, Human Pathology, vol.26, issue.2, pp.167-70, 1995.
DOI : 10.1016/0046-8177(95)90033-0

A. Shariff and M. Ather, Neuroendocrine differentiation in prostate cancer, Urology, vol.68, issue.1, pp.2-8, 2006.
DOI : 10.1016/j.urology.2006.02.002

F. Cuttitta, Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer, Nature, vol.4, issue.6031, pp.823-829, 1985.
DOI : 10.1038/316823a0

S. Guha, J. Lunn, C. Santiskulvong, and E. Rozengurt, Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1, Cancer Res, vol.63, pp.2379-87, 2003.

J. Hansson and P. Abrahamsson, Neuroendocrine pathogenesis in adenocarcinoma of the prostate, Annals of Oncology, vol.12, issue.suppl 2, pp.145-52, 2001.
DOI : 10.1093/annonc/12.suppl_2.S145

F. Bruzzone, Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord, Journal of Neurochemistry, vol.55, issue.2, pp.616-643, 2006.
DOI : 10.1016/S0167-4889(02)00389-0

N. Chartrel, Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity, Proceedings of the National Academy of Sciences, vol.275, issue.1, pp.15247-52, 2003.
DOI : 10.1016/S0378-1119(01)00651-5

N. Chartrel, The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions, Frontiers in Neuroendocrinology, vol.32, issue.4, pp.387-97, 2011.
DOI : 10.1016/j.yfrne.2011.04.001

S. Fukusumi, A New Peptidic Ligand and Its Receptor Regulating Adrenal Function in Rats, Journal of Biological Chemistry, vol.7, issue.47, pp.46387-95, 2003.
DOI : 10.1016/S0092-8674(00)81609-8

URL : http://www.jbc.org/content/278/47/46387.full.pdf

Y. Jiang, Identification and Characterization of a Novel RF-amide Peptide Ligand for Orphan G-protein-coupled Receptor SP9155, Journal of Biological Chemistry, vol.3, issue.30, pp.27652-27659, 2003.
DOI : 10.1016/S0006-8993(99)01972-1

URL : http://www.jbc.org/content/278/30/27652.full.pdf

B. Lectez, The Orexigenic Activity of the Hypothalamic Neuropeptide 26RFa Is Mediated by the Neuropeptide Y and Proopiomelanocortin Neurons of the Arcuate Nucleus, Endocrinology, vol.150, issue.5, pp.2342-50, 2009.
DOI : 10.1210/en.2008-1432

S. Takayasu, A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice, Proceedings of the National Academy of Sciences, vol.147, issue.6, pp.7438-7481, 2006.
DOI : 10.1210/en.2005-1580

V. Navarro, Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis, The Journal of Physiology, vol.82, issue.1, pp.237-286, 2006.
DOI : 10.1073/pnas.82.22.7757

S. Patel, Pyroglutamylated RFamide Peptide 43 Stimulates the Hypothalamic-Pituitary-Gonadal Axis via Gonadotropin-Releasing Hormone in Rats, Endocrinology, vol.149, issue.9, pp.4747-54, 2008.
DOI : 10.1210/en.2007-1562

URL : https://academic.oup.com/endo/article-pdf/149/9/4747/9005723/endo4747.pdf

H. Baribault, The G-Protein-Coupled Receptor GPR103 Regulates Bone Formation, Molecular and Cellular Biology, vol.26, issue.2, pp.709-726, 2006.
DOI : 10.1128/MCB.26.2.709-717.2006

URL : http://mcb.asm.org/content/26/2/709.full.pdf

Y. Anouar, Identification of a novel secretogranin II-derived peptide (SgII(187?252)) in adult and fetal human adrenal glands using antibodies raised against the human recombinant peptide, J Clin Endocrinol Metab, vol.83, pp.2944-51, 1998.

T. Yuan, S. Veeramani, and M. Lin, Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells, Endocrine Related Cancer, vol.14, issue.3, pp.531-578, 2007.
DOI : 10.1677/ERC-07-0061

URL : http://erc.endocrinology-journals.org/content/14/3/531.full.pdf

P. Rocchi, Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines, Cancer Res, vol.61, pp.1196-206, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01710707

M. Sumitomo, Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling, Journal of Clinical Investigation, vol.106, issue.11, pp.1399-407, 2000.
DOI : 10.1172/JCI10536

URL : http://www.jci.org/articles/view/10536/files/pdf

M. Ruscica, E. Dozio, M. Motta, and P. Magni, Role of neuropeptide Y and its receptors in the progression of endocrine-related cancer, Peptides, vol.28, issue.2, pp.426-460, 2007.
DOI : 10.1016/j.peptides.2006.08.045

B. Collado, M. Sanchez, I. Diaz-laviada, J. Prieto, and M. Carmena, Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1744, issue.2, pp.224-257, 2005.
DOI : 10.1016/j.bbamcr.2005.04.009

URL : https://doi.org/10.1016/j.bbamcr.2005.04.009

D. Farini, A. Puglianiello, C. Mammi, G. Siracusa, and C. Moretti, Dual Effect of Pituitary Adenylate Cyclase Activating Polypeptide on Prostate Tumor LNCaP Cells: Short- and Long-Term Exposure Affect Proliferation and Neuroendocrine Differentiation, Endocrinology, vol.144, issue.4, pp.1631-1674, 2003.
DOI : 10.1210/en.2002-221009

URL : https://academic.oup.com/endo/article-pdf/144/4/1631/10805649/endo1631.pdf

M. Juarranz, Neuroendocrine differentiation of the LNCaP prostate cancer cell line maintains the expression and function of VIP and PACAP receptors, Cellular Signalling, vol.13, issue.12, pp.887-94, 2001.
DOI : 10.1016/S0898-6568(01)00199-1

I. Abasolo, L. Montuenga, and A. Calvo, Adrenomedullin prevents apoptosis in prostate cancer cells, Regulatory Peptides, vol.133, issue.1-3, pp.115-137, 2006.
DOI : 10.1016/j.regpep.2005.09.026

URL : http://dadun.unav.edu/bitstream/10171/21811/1/RegulatorPeptides2006133115.pdf

C. Berenguer, Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates ???neuroendocrine phenotype??? in LNCaP prostate tumor cells, Oncogene, vol.61, issue.4, pp.506-524, 2008.
DOI : 10.1002/(SICI)1097-0045(20000215)42:3<186::AID-PROS4>3.0.CO;2-E

URL : https://hal.archives-ouvertes.fr/hal-01824271

M. Zhong, M. Boseman, A. Millena, and S. Khan, Oxytocin Induces the Migration of Prostate Cancer Cells: Involvement of the Gi-Coupled Signaling Pathway, Molecular Cancer Research, vol.8, issue.8, pp.1164-72, 2010.
DOI : 10.1158/1541-7786.MCR-09-0329

P. Deeble, D. Murphy, S. Parsons, and M. Cox, Interleukin-6- and Cyclic AMP-Mediated Signaling Potentiates Neuroendocrine Differentiation of LNCaP Prostate Tumor Cells, Molecular and Cellular Biology, vol.21, issue.24, pp.8471-82, 2001.
DOI : 10.1128/MCB.21.24.8471-8482.2001

URL : http://mcb.asm.org/content/21/24/8471.full.pdf

S. Zelivianski, Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1539, issue.1-2, pp.28-43, 2001.
DOI : 10.1016/S0167-4889(01)00087-8

URL : https://doi.org/10.1016/s0167-4889(01)00087-8

L. Lee, J. Guan, Y. Qiu, and H. Kung, Neuropeptide-Induced Androgen Independence in Prostate Cancer Cells: Roles of Nonreceptor Tyrosine Kinases Etk/Bmx, Src, and Focal Adhesion Kinase, Molecular and Cellular Biology, vol.21, issue.24, pp.8385-97, 2001.
DOI : 10.1128/MCB.21.24.8385-8397.2001

URL : http://mcb.asm.org/content/21/24/8385.full.pdf