M. Harbuz, S. Nicholson, B. Gillham, and S. Lightman, Stress responsiveness of hypothalamic corticotrophin-releasing factor and pituitary pro-opiomelanocortin mRNAs following high-dose glucocorticoid treatment and withdrawal in the rat, Journal of Endocrinology, vol.127, issue.3, pp.407-422, 1990.
DOI : 10.1677/joe.0.1270407

J. Herman, D. Adams, and C. Prewitt, Regulatory Changes in Neuroendocrine Stress-Integrative Circuitry Produced by a Variable Stress Paradigm, Neuroendocrinology, vol.61, issue.2, pp.180-90, 1995.
DOI : 10.1159/000126839

K. Karalis, L. Muglia, D. Bae, H. Hilderbrand, and J. Majzoub, CRH and the immune system, Journal of Neuroimmunology, vol.72, issue.2, pp.131-137, 1997.
DOI : 10.1016/S0165-5728(96)00178-6

F. Tilders, E. Schmidt, and D. De-goeij, Phenotypic Plasticity of CRF Neurons during Stress, Annals of the New York Academy of Sciences, vol.49, issue.1 Corticotropin, pp.39-52, 1993.
DOI : 10.1016/0006-8993(90)91738-3

P. Sawchenko, L. Swanson, and W. Vale, Corticotropin-releasing factor: co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat, The Journal of Neuroscience, vol.4, issue.4, pp.1118-1147, 1984.
DOI : 10.1523/JNEUROSCI.04-04-01118.1984

E. Mezey, T. Reisine, L. Skirboll, M. Beinfeld, and J. Kiss, Cholecystokinin in the medial parvocellular subdivision of the paraventricular nucleus. Coexistence with corticotropin-releasing hormone, Ann N Y Acad Sci, vol.44, pp.152-158, 1985.

S. Lightman and W. Young, Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal, Nature, vol.328, issue.6131, pp.643-648, 1987.
DOI : 10.1038/328643a0

F. Antoni, Vasopressinergic Control of Pituitary Adrenocorticotropin Secretion Comes of Age, Frontiers in Neuroendocrinology, vol.14, issue.2, pp.76-122, 1993.
DOI : 10.1006/frne.1993.1004

A. Watts and G. Watts, Physiological regulation of peptide messenger RNA colocalization in rat hypothalamic paraventricular medial parvicellular neurons, The Journal of Comparative Neurology, vol.13, issue.4, pp.501-515, 1995.
DOI : 10.1113/jphysiol.1984.sp015162

K. Ishikawa, Y. Taniguchi, K. Inoue, K. Kurosumi, and M. Suzuki, Immunocytochemical Delineation of Thyrotrophic Area: Origin of Thyrotropin-Releasing Hormone in the Median Eminence, Neuroendocrinology, vol.47, issue.5, pp.384-392, 1988.
DOI : 10.1159/000124943

I. Merchenthaler and Z. Liposits, Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels, Acta Biol Hung, vol.45, pp.361-74, 1994.

C. Fekete, E. Mihaly, L. Luo, J. Kelly, J. Clausen et al., Association of Cocaine- and Amphetamine-Regulated Transcript-Immunoreactive Elements with Thyrotropin-Releasing Hormone-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus and Its Role in the Regulation of the Hypothalamic???Pituitary???Thyroid Axis during Fasting, The Journal of Neuroscience, vol.20, issue.24, pp.9224-9258, 2000.
DOI : 10.1523/JNEUROSCI.20-24-09224.2000

E. Abel, R. Ahima, M. Boers, J. Elmquist, and F. Wondisford, Critical role for thyroid hormone receptor ??2 in the regulation of paraventricular thyrotropin-releasing hormone neurons, Journal of Clinical Investigation, vol.107, issue.8, pp.1017-1040, 2001.
DOI : 10.1172/JCI10858

L. Ronald, M. , and F. Csaba, The TRH neuron: a hypothalamic integrator of energy metabolism, Prog Brain Res, vol.153, pp.209-244, 2006.

T. Segerson, J. Kauer, H. Wolfe, H. Mobtaker, P. Wu et al., Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus, Science, vol.238, issue.4823, pp.78-80, 1987.
DOI : 10.1126/science.3116669

I. Kakucska, R. W. Lechan, and R. , Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine., Endocrinology, vol.130, issue.5, pp.2845-50, 1992.
DOI : 10.1210/endo.130.5.1572297

L. Tapia-arancibia, S. Arancibia, and H. Astier, Corroboration*, Endocrinology, vol.116, issue.6, pp.2314-2323, 1985.
DOI : 10.1210/endo-116-6-2314

S. Ceccatelli, M. Eriksson, and T. Hökfelt, Distribution and Coexistence of Corticotropin-Releasing Factor-, Neurotensin-, Enkephalin-, Cholecystokinin-, Galanin- and Vasoactive Intestinal Polypeptide/Peptide Histidine Isoleucine-Like Peptides in the Parvocellular Part of the Paraventricular Nucleus, Neuroendocrinology, vol.49, issue.3, pp.309-332, 1989.
DOI : 10.1159/000125133

S. Ceccatelli, A. Cintra, T. Hökfelt, K. Fuxe, A. Wikström et al., Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus, Experimental Brain Research, vol.78, issue.1, pp.33-42, 1989.
DOI : 10.1007/BF00230684

M. Boutahricht, J. Guillemot, M. Montero-hadjadje, Y. Barakat, E. Ouezzani et al., Immunohistochemical distribution of the secretogranin II-derived peptide EM66 in the rat hypothalamus: A comparative study with jerboa, Neuroscience Letters, vol.414, issue.3, pp.268-72, 2007.
DOI : 10.1016/j.neulet.2006.12.033

URL : https://hal.archives-ouvertes.fr/hal-01706443

E. Yamani, F. , Y. L. Guérin, M. , E. Ouezzani et al., EM66-containing neurones in the hypothalamic parvicellular paraventricular nucleus of the rat: no plasticity related to acute immune stress, Neuro Endocrinol Lett, vol.31, pp.609-624, 2010.

J. Djordjevi?, G. Cviji?, and V. Davidovi?, Different activation of ACTH and corticosterone release in response to various stressors in rats, Physiol Res, vol.52, pp.67-72, 2003.

Y. Wong, C. Jr, W. , D. Mello, and A. , Acute-stress-induced facilitation of the hypothalamo?pituitary?adrenal axis, Neuroendocrinology, vol.6, pp.345-65, 2000.

N. Koibuchi, R. Gibbs, M. Suzuki, and D. Pfaff, Thyroidectomy Induces Fos-like Immunoreactivity Within Thyrotropin-Releasing Hormone-Expressing Neurons Located in the Paraventricular Nucleus of the Adult Rat Hypothalamus*, Endocrinology, vol.129, issue.6, pp.3208-3224, 1991.
DOI : 10.1210/endo-129-6-3208

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, 1986.

R. Kvetnansky and L. Mikulaj, Adrenal and Urinary Catecholamines in Rats During Adaptation to Repeated Immobilization Stress, Endocrinology, vol.87, issue.4, pp.738-781, 1970.
DOI : 10.1210/endo-87-4-738

Y. Anouar, C. Desmoucelles, Y. L. Leprince, J. Breault, L. Gallo-payet et al., Identification of a novel secretogranin II-derived peptide (SgII (187?152)) in adult and fetal human adrenal glands using antibodies raised against the human recombinant peptide, J Clin Endocrinol Metab, vol.83, pp.2944-51, 1998.

M. Montero-hadjadje, G. Pelletier, Y. L. Guillemot, J. Magoul, R. Tillet et al., Biochemical Characterization and Immunocytochemical Localization of EM66, a Novel Peptide Derived from Secretogranin II, in the Rat Pituitary and Adrenal Glands, Journal of Histochemistry & Cytochemistry, vol.60, issue.8, pp.1083-95, 2003.
DOI : 10.1074/jbc.275.17.12553

URL : https://hal.archives-ouvertes.fr/hal-01706425

S. Shu, G. Ju, and L. Fan, The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system, Neuroscience Letters, vol.85, issue.2, pp.169-71, 1988.
DOI : 10.1016/0304-3940(88)90346-1

S. Gasman, S. Chasserot-golaz, M. Malacombe, M. Way, and M. Bader, Regulated Exocytosis in Neuroendocrine Cells: A Role for Subplasmalemmal Cdc42/N-WASP-induced Actin Filaments, Molecular Biology of the Cell, vol.15, issue.2, pp.520-551, 2004.
DOI : 10.1074/jbc.M107464200

R. Lechan, Update on thyrotropin-releasing hormone, Thyroid Today, vol.16, pp.1-12, 1993.

O. Paulmyer-lacroix, V. Guillaume, G. Anglade, M. Grino, and C. Oliver, Régulation de la fonction corticotrope dans les situations de stress, Ann Endocrinol, vol.56, pp.245-51, 1995.

K. Pacak, M. Palkovits, D. Yadid, R. Kvetnansky, I. Kopin et al., Heterogenous neurochemical responses to different stressors: a test of Selye's doctrine of non specificity, Am J Physiol, vol.275, pp.1247-55, 1998.

S. Ceccatelli, L. Giardino, and L. Calzá, Response of Hypothalamic Peptide mRNAs to Thyroidectomy, Neuroendocrinology, vol.56, issue.5, pp.694-703, 1992.
DOI : 10.1159/000126295

S. Ma and D. Morilak, Induction of FOS expression by acute immobilization stress is reduced in locus coeruleus and medial amygdala of Wistar???Kyoto rats compared to Sprague???Dawley rats, Neuroscience, vol.124, issue.4, pp.963-72, 2004.
DOI : 10.1016/j.neuroscience.2003.12.028

X. Jiang, S. Guo, S. Xu, Q. Yin, Y. Ohshita et al., Sympathetic nervous system mediates cold stress-induced suppression of natural killer cytotoxicity in rats, Neuroscience Letters, vol.358, issue.1, pp.1-4, 2004.
DOI : 10.1016/j.neulet.2003.11.007

V. Bartanusz, J. Aubry, D. Jezova, J. Baffi, and J. Kiss, Up-Regulation of Vasopressin mRNA in Paraventricular Hypophysiotrophic Neurons after Acute Immobilization Stress, Neuroendocrinology, vol.58, issue.6, pp.625-634, 1993.
DOI : 10.1159/000126602

S. Dronjak, L. Gavrilovi?, D. Filipovi?, and M. Radojci?, Immobilization and cold stress affect sympatho???adrenomedullary system and pituitary???adrenocortical axis of rats exposed to long-term isolation and crowding, Physiology & Behavior, vol.81, issue.3, pp.409-424, 2004.
DOI : 10.1016/j.physbeh.2004.01.011

P. Wu and G. Childs, Cold and novel environment stress affects AVP mRNA in the paraventricular nucleus, but not the supraoptic nucleus: An in Situ hybridization study, Molecular and Cellular Neuroscience, vol.1, issue.3, pp.233-282, 1990.
DOI : 10.1016/1044-7431(90)90006-P

M. Boutahricht, J. Guillemot, M. Montero-hadjadje, E. Ouezzani, S. Alaoui et al., Biochemical Characterisation and Immunohistochemical Localisation of the Secretogranin II-Derived Peptide EM66 in the Hypothalamus of the Jerboa (Jaculus orientalis): Modulation by Food Deprivation, Journal of Neuroendocrinology, vol.132, issue.6, pp.372-380, 2005.
DOI : 10.1007/978-3-642-68289-6

Y. Barakat, J. Pape, M. Boutahricht, E. Ouezzani, S. Alaoui et al., Immunocytochemical Detection of Cholecystokinin and Corticotrophin-Releasing Hormone Neuropeptides in the Hypothalamic Paraventricular Nucleus of the Jerboa (Jaculus orientalis): Modulation by Immobilisation Stress, Journal of Neuroendocrinology, vol.697, issue.10, pp.767-75, 2006.
DOI : 10.1016/S0306-4522(99)00133-5

Y. Barakat, J. Pape, M. Boutahricht, E. Ouezzani, S. Alaoui et al., Vasopressin-Containing Neurons of the Hypothalamic Parvocellular Paraventricular Nucleus of the Jerboa: Plasticity Related to Immobilization Stress, Neuroendocrinology, vol.45, issue.6, pp.396-404, 2006.
DOI : 10.1111/j.1749-6632.1993.tb49921.x

Y. Barakat, J. Pape, M. Boutahricht, E. Ouezzani, S. Alaoui et al., Oxytocin-containing neurons in the hypothalamic parvicellular paraventricular nucleus of the jerboa: no plasticity related to acute immobilization, Neuro Endocrinol Lett, vol.29, pp.547-51, 2008.

F. Tilders, R. Derijk, V. Dam, A. Vincent, V. Schotanus et al., Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: Routes and intermediate signals, Psychoneuroendocrinology, vol.19, issue.2, pp.209-241, 1994.
DOI : 10.1016/0306-4530(94)90010-8

K. Elmquist, T. Scammell, and C. Saper, Mechanisms of CNS response to systemic immune challenge: the febrile response, Trends in Neurosciences, vol.20, issue.12, pp.565-70, 1997.
DOI : 10.1016/S0166-2236(97)01138-7

C. Juaneda, P. Lafon-dubourg, P. Ciofi, A. Sarrieu, T. Wenger et al., CCK mRNA expression in neuroendocrine CRH neurons is increased in rats subjected to an immune challenge, Brain Research, vol.901, issue.1-2, pp.277-80, 2001.
DOI : 10.1016/S0006-8993(01)02365-4

D. De-goeij, R. Kvetnansky, M. Whtnall, D. Jezova, and F. Berkenbosch, Repeated Stress-Induced Activation of Corticotropin-Releasing Factor Neurons Enhances Vasopressin Stores and Colocalization with Corticotropin-Releasing Factor in the Median Eminence of Rats, Neuroendocrinology, vol.53, issue.2, pp.150-159, 1991.
DOI : 10.1159/000125712

D. De-goeij, D. Jezova, and F. Tilders, Repeated stress enhances vasopressin synthesis in corticotropin releasing factor neurons in the paraventricular nucleus, Brain Research, vol.577, issue.1, pp.165-173, 1992.
DOI : 10.1016/0006-8993(92)90552-K

S. Makino, M. Smith, and P. Gold, Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels., Endocrinology, vol.136, issue.8, pp.3299-309, 1995.
DOI : 10.1210/endo.136.8.7628364

Z. Pirnik and A. Kiss, Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: Co-staining with vasopressin, oxytocin, and tyrosine hydroxylase, Brain Research Bulletin, vol.65, issue.5, pp.423-454, 2005.
DOI : 10.1016/j.brainresbull.2005.02.023

L. Calza, L. Aloe, and L. Giardino, Thyroid Hormone-Induced Plasticity in the Adult Rat Brain, Brain Research Bulletin, vol.44, issue.4, pp.549-57, 1997.
DOI : 10.1016/S0361-9230(97)00241-4

F. Sanchez-franco, L. Fernandez, G. Fernandez, and L. Cacicedo, Thyroid Hormone Action on ACTH Secretion, Hormone and Metabolic Research, vol.21, issue.10, pp.550-552, 1989.
DOI : 10.1055/s-2007-1009285

R. Uribe, M. Cisneros, M. Vargas, L. Lezama, A. Cote-vélez et al., The systemic inhibition of nitric oxide production rapidly regulates TRH mRNA concentration in the paraventricular nucleus of the hypothalamus and serum TSH concentration. Studies in control and cold-stressed rats, Brain Research, vol.1367, pp.188-97, 2011.
DOI : 10.1016/j.brainres.2010.10.011