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Observability is the property that enables recovering the state of a dynamical system from a

reduced number of measured variables. In high-dimensional systems, it is therefore important to

make sure that the variable recorded to perform the analysis conveys good observability of the sys-

tem dynamics. The observability of a network of neuron models depends nontrivially on the

observability of the node dynamics and on the topology of the network. The aim of this paper is

twofold. First, to perform a study of observability using four well-known neuron models by com-

puting three different observability coefficients. This not only clarifies observability properties of

the models but also shows the limitations of applicability of each type of coefficients in the context

of such models. Second, to study the emergence of phase synchronization in networks composed of

neuron models. This is done performing multivariate singular spectrum analysis which, to the best

of the authors’ knowledge, has not been used in the context of networks of neuron models. It is

shown that it is possible to detect phase synchronization: (i) without having to measure all the state

variables, but only one (that provides greatest observability) from each node and (ii) without having

to estimate the phase. Published by AIP Publishing. https://doi.org/10.1063/1.4985291

The state of a neuron model can be trivially recon-

structed if all variables are measured. In practice that is

not the case. If only one variable can be measured, which

would be the most adequate one to reconstruct the phase

space? The observability theory provides answers to this

question. Although such a theory has been developed and

applied to a number of systems in nonlinear dynamics, it

does face some new challenges when applied to some neu-

ron models. This paper describes results of three differ-

ent observability measures applied to four neuron models

commonly used in the literature. Given a network com-

posed of neuron models, it is often desirable to be able to

detect phase synchronization (PS). This situation has a

number of implications and applications in neuroscience.

A second aim of this paper is to provide numerical evi-

dences that structured-varimax multivariate singular

spectrum analysis (svM-SSA) of network data can be

used to detect phase synchronization, without having to

estimate phases, by processing one variable from each

node of the network. The use of a single variable is viable

as long as the used variable is one that provides good

observability of the dynamics compared to the rest.

I. INTRODUCTION

Since the early days of the last century, there has been

sustained activity in developing mathematical models for

neuron dynamics. More recently, such models have been

combined in networks in order to investigate collective

behavior. In either approaches mathematical tools and con-

cepts abound. The authors of Ref. 42 argue that there must

be a continued effort in using such models to reveal so many

aspects of the brain dynamics which remain ununderstood.

The same point had been argued by Brown in a very enter-

taining discussion.8

In this respect, an important concept is that of observ-

ability of the dynamics from a given measured variable.

Since it is not practical, especially in high-dimension sys-

tems, to record all state variables, a relevant problem is to

know which are the best variables to record to be able to

infer the state of the whole system. Observability, although

not in its classical interpretation, provides an answer to that

question. It has been acknowledged that to choose variables

that provide good observability of the dynamics enables esti-

mating the state of a network of neuron models using

Kalman-related methods.39,40 In a recent study about control-

lability and observability of network motifs built with neuron

models, it has been found that “it is necessary to take the

node dynamics into consideration when selecting the best

driver (sensor) node to modulate (observe) the whole net-

work activity” Ref. 43 (Sec. III A).

In view of this, one of the aims of this paper is to con-

duct a study of observability properties of four neuron mod-

els following three points of view: using the model equations

and numerical analysis,29 using the model equations and

symbolic manipulations,28 and using time series data.3 An

interesting point that has been revealed in this study is

related to aspects that are specific to neuron models. For

instance, in the case of the Hodgkin–Huxley model, three of

the four state variables are not directly measurable. Thea)Electronic mail: aguirre@ufmg.br
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study of observability could help understand if there are

any serious limitations related to this. In such a case, the

use of observability coefficients estimated from data is

most convenient, because the practical relevance of mea-

suring ionic currents could be evaluated. Due to the func-

tional relation of such currents with the state variables, the

computation of observability coefficients from the equa-

tions is significantly more difficult. Other examples are the

integrate and fire models, that produce discontinuities in the

data. Such a phenomenon may have adverse effects on

data-driven observability coefficients, and the equation-

based computation of coefficients is also questionable

because of the “hidden state variable” related to the firing

process. These aspects, that have come to light in the con-

text of the investigated neuron models, are here described

for the first time.

Another important aspect that has gained considerable

attention is that of synchronization of networked neuron

models. Because in real life neurons are not identical and

coupling could be weak, phase synchronization (PS) is some-

what more well suited than complete synchronization in this

context. A difficulty with most procedures used to detect PS

is the need for defining a phase, which is not always simple,

if at all possible. Spectral coherence related measures of PS

have recently been considered and found to deviate consider-

ably from expected results.32 An alternative procedure that

does not require the estimation of the phase is the multivari-

ate singular spectrum analysis (M-SSA) for PS phenomena,

originally proposed by Groth and Ghil.14 This method will

be reviewed and applied to detect PS in networks of neuron

models in this work for the first time, to the best of the

authors’ knowledge. Although observability and synchroniz-

ability are different problems and treated as such in this

paper, there is a connection between them in the context of

multivariate singular spectrum analysis, as will be pointed

out.

This paper is organized as follows. For the sake of

completion, there are two sections with the background

material. Section II briefly describes four of the neuron

models considered in this study. Section III reviews the

main tools used. The numerical results are presented in

Sec. III D and the results regarding synchronization are

briefly described in Sec. IV. Conclusions are provided in

Sec. V.

II. NEURON MODELS

Four neuron models that will be used are presented. 2D,

3D, and 4D models and a switching model of the type inte-

grate and fire were chosen. It is believed that this choice is

representative but admittedly it is also somewhat arbitrary.

For a general comparison of the models, see Izikevich’s

review.21

A. The Hodgkin–Huxley model

The Hodgkin–Huxley, a biophysically-based model of

neuron dynamics, is given by18

_V ¼ 1

Cm

I � IK � INa � Ilð Þ

_n ¼ anð1� nÞ � bnn

_m ¼ amð1� mÞ � bmm

_h ¼ ahð1� hÞ � bhh;

8>>>>>><
>>>>>>:

(1)

where

IK ¼ �gKn4ðV � VKÞ; INa ¼ �gNam3hðV � VNaÞ;
Il ¼ �glðV � VlÞ

an ¼
0:01ðV þ 10Þ

e
Vþ10

10 � 1
; bn ¼ 0:125e

V
80

am ¼
0:1ðV þ 25Þ

e
Vþ25

10 � 1
; bm ¼ 4e

V
18

ah ¼ 0:07e
V
20; bh ¼ e

Vþ30
10 þ 1

� ��1
;

with the following parameter values: membrane capacitance

Cm ¼ 1 lF=cm2; constant membrane potentials VK ¼ 12

mV, VNa ¼ �115 mV, and Vl ¼ �10:6 mV; constants asso-

ciated with membrane conductances �gK ¼ 36mS=cm2,

�gNa ¼ 120mS=cm2, and the conductance �gl ¼ 0:3mS=cm2. I
is the total current density through the membrane, and

IK; INa. and Il correspond to the current density due to potas-

sium ions, sodium ions, and other ions, respectively. All cur-

rent densities are given in lA=cm2. Variables n, m, and h are

dimensionless variables corresponding to the proportion of

the potassium inside the membrane, the proportion of acti-

vating molecules within the membrane, and the proportion

of inactivating molecules outside it, respectively.

B. The FitzHugh–Nagumo model

The model obtained from a modified van der Pol’s

equation

_x ¼ cðyþ x� x3=3þ IÞ
_y ¼ �ðx� aþ byÞ=c;

(
(2)

is known as the FitzHugh–Nagumo model,9,34,39 and is con-

sidered to be a simplified version of the Hodgkin–Huxley

model in the sense that it reproduces some of the main fea-

tures of the dynamics. In model (2), (a, b, c) are constant

parameters and I is a stimulus, that corresponds to membrane

current in the Hodgkin–Huxley model. x is usually identified

with the membrane potential, and y is the recovery variable.

Model(2) with (a,b,c)¼ (0.7, 0.8, 3) was investigated in Ref.

9 with I¼�0.4 and in Ref. 45 with I(t) being a slowly vary-

ing stimulus within the range �1:5 � IðtÞ � �0:4.

C. The Hindmarsh–Rose model

The Hindmarsh–Rose equations are a three-equilibrium-

point model with adaptation17

_x ¼ y� ax3 þ bx2 þ I � z

_y ¼ c� dx2 � y

_z ¼ r sðx� x1Þ � z½ �;

8><
>: (3)
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with (a,b,c,d)¼ (1, 3, 1, 5), where x1 is a constant. The con-

stant parameters r and s determine the dynamical response to

a short pulse of depolarizing current. Here, x is the mem-

brane potential and y is the recovery variable (as in the

FitzHugh–Nagumo model). In this model, z is an adaptation

current that hyperpolarizes the cell. Similar to y, z quantifies

the transport of ions but now through slow channels.

The dynamics associated with z is very slow compared

to those of x and y. The authors investigate three values for

the current: I¼ 0.4, I¼ 2, and I¼ 4. For I¼ 3.25, a “random”

(chaotic) burst structure has been reported.

D. Izhikevich’s spiking neuron Model

The model

_v ¼ 0:04v2 þ 5vþ 140� uþ I

_u ¼ aðbv� uÞ;

(

if v � 30 then

���� v c

u uþ d
(4)

was proposed in Ref. 20 In Eq. (4), a b means that a
receives the value of b. Model (4) combines aspects of the

Hodgkin–Huxley model and of integrate-and-fire neuron

models, and reproduces spiking and bursting behavior of

known types of cortical neurons. In Eq. (4), v represents the

membrane potential and u, the membrane recovery variable;

(a,b,c,d) are constants and I is the sum of the synaptic cur-

rents (Isyn, to be used in coupling neuron models) and

injected dc currents (Iin). Depending on the parameter val-

ues, a rich variety of dynamical regimes are possible. For

instance (a,b,c,d)¼ (0.02, 0.2, �50, 2) with Isyn¼ 10 results

in chattering20 and (a,b,c,d)¼ (0.2, 2, �56, �16) with

Isyn¼�99 results in chaotic firing21 as evidenced by the

first-return map to a Poincar�e section (Fig. 1). The fact that a

second-order model could produce chaos should not cause

surprise because of the switching. In a sense, the state of the

switch acts as a “hidden state variable.” The Izhihevich’s

model is therefore a “truncated” model in the sense that all

underlying mechanisms are not explicitly described.

III. MATHEMATICAL AND NUMERICAL TOOLS

In this section, we briefly review the observability coeffi-

cients and multivariate singular spectrum analysis (M-SSA).

Because of confusion in the literature as to the development

of observability coefficients,43 here a brief historical overview

is provided.

The concepts of observability and controllability for

linear systems are due to Kalman.23 These were extended to

nonlinear systems over a decade later as discussed.16 In

both cases, the systems are classified either as observable or

not. Bernard Friedland suggested computing a conditioning

number of a symmetric matrix obtained from the linear
observability or controllability matrices as a way of getting

a continuous function of the parameters instead of a binary

(either observable or not) classification.10 In fact, it was

argued that although a similarity transformation of coordi-

nates would not change the rank of the observability or con-

trollability matrices, and therefore would not alter the

resulting classification, the indices proposed by Friedland

are sensitive to such a transformation,1 to changes in

parameters and, in the nonlinear case, to the location in the

state space. The concept of a continously varying quantifi-

cation of observability was adapted to nonlinear dynamical

systems,27,30 where the jacobian matrix of the vector field
was used in the analysis. Later on, it was shown that the

jacobian matrix of the map between the original and embed-

ding spaces coincided with the nonlinear observability

matrix based on Lie derivatives.29 Hence, the quantification

of observability was then performed using such a matrix.

The extension to multivariate embeddings and the relation

to the Takens’ theorem were presented in Ref. 2. The proce-

dure proposed in Ref. 29 is briefly reviewed in Sec. III-A.

A. Numerical observability coefficients

Consider the autonomous system _x ¼ f ðxÞ, where x 2
Rn is the state vector and f : Rn 7!Rn is the vector field.

Consider further the measurement function h : Rn 7!R such

that sðtÞ ¼ hðxÞ, where s 2 R is referred to as the observable

or recorded variable. The case for which s 2 Rp; p > 1 has

been investigated in Ref. 2. The general observability matrix

can be written as16

OsðxÞ ¼ @L0
f hðxÞ
@x

…
@Ln�1

f hðxÞ
@x

" #T

; (5)

FIG. 1. Chaotic behavior produced by

the Izhikevich’s model. Parameter val-

ues: (a, b, c, d)¼ (0.2, 2, �56, �16)

with Isyn ¼�99. The six-branches

first-return map to a Poincar�e section

of (4) is typical of a “funnel” chaotic

behavior encountered in the R€ossler

system38 for a� 0.540, b¼ 2 and

c¼ 4. (a) Chaotic attractor (b) First-

return map.
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where Lf hðxÞ is the Lie derivative of h along the vector field

f19 and s indicates that OsðxÞ refers to the system observed

from s(t). In the case hðxÞ returns, only one of the state varia-

bles matrix (5) can be rewritten as

OsðxÞ ¼ C C ~A … C ~A
n�1

h iT

; (6)

where C ¼ ½1 0…0� if hðxÞ returns the first state variable,

C ¼ ½0 1 0…0� if hðxÞ returns the second, and so on. Also

~A
jþ1 ¼

@Lj
f fiðxÞ
@x

" #
; i ¼ 1; 2;…; n (7)

for j ¼ 0;…; n� 2, where

Lf fiðxÞ ¼
@fiðxÞ
@x

f ðxÞ ¼
Xn

k¼1

@fiðxÞ
@x

fk (8)

is the Lie derivative of the ith component of the vector field f

and the higher-order derivatives can be recursively deter-

mined as

Lj
f fiðxÞ ¼ Lf Lj�1

f fiðxÞ
h i

; (9)

with L0
f fiðxÞ ¼ fiðxÞ. If OsðxÞ is singular then there is no

global diffeomorphism between the original phase space and

the n-dimensional space reconstructed using s and n � 1 suc-

cessive derivatives of it. Because the system is nonlinear,

often OsðxÞ may become singular or nearly singular at spe-

cific regions of state space at which the original dynamics

become poorly observable or nonobservable altogether.

Hence, it is sometimes instructive to have an average mea-

sure of the numerical conditioning of OsðxÞ. In the present

paper this is achieved averaging along a trajectory xðtÞ the

quotient between the mininum and maximum eigenvalues of

OsðxÞTOsðxÞ. The result is referred to as the observability

coefficient ds for the system from the s variable.

B. Symbolic observability coefficients

The advantage of the numerical observability coeffi-

cients is that they take into account the domain of the state

space actually visited by the trajectory and, consequently,

whether the neighorhood of the singular observability mani-

fold is visited or not. Nevertheless, these observability coef-

ficients are not normalized and cannot be used to compare

different dynamical systems. To overcome such a problem,

symbolic observability coefficients were introduced.28 The

underlying idea is that the more complicated the determinant

det Os of the observability matrix, the less observable.

Although the analytical computation of det Os can be a

nearly impossible task for a five-dimensional rational sys-

tem, the complexity of det Os can be assessed simply by

counting the number of linear, nonlinear and rational terms

in it, without paying attention to its exact form.6 This is com-

puted from the Jacobian matrix of the system which is trans-

formed into the symbolic form, using 1, �1, and ��1 for linear,

nonlinear, and rational elements, respectively. The observability

matrix is then constructed using symbolic algebra detailed in

Ref. 6. The symbolic observability coefficient is thus defined as

gsn ¼ N1

N1 þ N�1 þ N��1

þ N�1

maxðN1; 1Þ þ N�1 þ N��1

� �2

þ
N��1

maxðN1; 1Þ þ N�1 þ N��1

� �3
; (10)

where N1, N�1 , and N��1 are the numbers of symbolic terms 1,
�1, and ��1, respectively. These symbolic coefficients are very

promising for assessing the observability of large systems

and networks.31 The observability can be considered “good”

when gs3 > 0:75, meaning that most likely the determinant

of the observability matrix is linear if not constant; conse-

quently the influence of the singular observability matrix is

not very important.41

C. Observability coefficients from data

The procedures reviewed in Secs. III A and III B require

the knowledge of the system equations. Motivated by the

fact that in practice equations are not always available, an

alternative procedure was proposed.3 However, observability

is, by definition, related to the equations of the vector field.

Hence, estimating coefficients from data is only an indirect

way of assessing observability from some of its signatures
found in a reconstructed (embedding) space, as explained

next.

The rationale behind the method3 is that in the embed-

ding space of a system with poor observability conveyed by

a recorded time series, trajectories are either pleated or

squeezed.3 The SVDO (Singular Value Decomposition

Observability) coefficients hence quantify, using the singular

value decomposition (SVD) of a trajectory matrix, the local

complexity of the reconstructed space. Simpler structures are

associated with better observability whereas more complex

local structures with poorer observability. A key point to be

noticed here is that SVDO cannot quantify observability per
se, which by definition would require the vector field equa-

tions, but rather are indicators of the average local complex-
ity of a reconstructed space, which often—but not always, as

will be seen shortly—correlates with observability. In this

paper we use time delay coordinates. Although the results

will be reported for a given time delay and embedding

dimension, numerical studies with different values of such

parameters show no change in the ranking of the variables in

terms of observability.

D. Multivariate singular spectrum analysis

Here, the use of the structured-varimax multivariate sin-

gular spectrum analysis (svM-SSA) for phase synchroniza-

tion (PS) phenomena, originally proposed by Groth and

Ghil,14 is briefly reviewed (for details, see Ref. 13).

Recently, it was argued that the explanatory power of svM-

SSA on the mechanism of PS is greatly enhanced by the use

of a single state variable, as compared to the original

approach using all of them, as long as this variable provides

103103-4 Aguirre, Portes, and Letellier Chaos 27, 103103 (2017)



good observability of the dynamics as compared to the

rest.35

Consider J coupled oscillators and the respective time

series of length N of the variable that provides the best

observability. Each time series is split in windows of m-data

points,7 and a full augmented “trajectory matrix” X ¼
½X1;…;XJ� 2 RN�mþ1;Jm is formed by concatenating the

individual time series. In the M-SSA literature, the parameter

m is called the window width or embedding dimension: we

prefer to use the former term. The svM-SSA starts by the

eigendecomposition of the lag-covariance matrix C ¼
XTX=ðN � mþ 1Þ as K ¼ ETCE. To overcome a known

mixture of the eigenvectors related to the individual subsys-

tems, a structured-varimax rotation14,36 is performed on the

first S eigenvectors, E�S ¼ EST. Finally, the modified varian-

ces fk�kg
S
k¼1 � diagðK�SÞ are obtained through K�S ¼ TTKST

and they encode information about the underlying structure

of the data: a single high value is related to a trend; pairs of

nearly equal values reflect the oscillatory modes; near zero

values are associated with noncoherent oscillations and will

be referred to as the noise floor. Hence, it is possible to infer

about PS, without any prior definition of how to estimate the

oscillators phases, from the evolution of k�k pairs associated

to the oscillatory modes in the data, as schematically illus-

trated in Fig. 2 for J¼ 4 idealized oscillators.

IV. RESULTS ON OBSERVABILITY

Here we provide numerical results about the observabil-

ity of the models in Sec. II which were integrated using a

4th-order Runge–Kutta algorithm with integration step

h¼ 0.01.

A. The Hodgkin–Huxley model

Given the nonlinearity and dimension of the

Hodgkin–Huxley model and due to the recursive computa-

tion of Lie derivatives, the observability matrices are too

large (hundreds of entries obtained by symbolic computa-

tion) to be shown here. Also, since (1) is a biophysically-

based model, when investigating observability properties

one should keep in mind what variables are actually record-

able. Out of the four state variables of this model only the

membrane potential V is recordable, the other variables

being dimensionless quantities. Nonetheless, for the sake of

completion, we here report the observability coefficients for

the four state variables in Table I. The symbolic Jacobian

matrix of the Hodgkin–Huxley model is

J sym ¼

�1 �1 �1 �1
��1 �1 0 0

��1 0 �1 0

��1 0 0 �1

2
66664

3
77775 (11)

from which the symbolic observability coefficients shown in

Table I can be obtained.

Because the state variables n, m, and h cannot be mea-

sured, a different procedure was followed that is made avail-

able by using the indirect assessment of observability from

data proposed in Ref. 3. Hence the membrane potential V
and the currents IK; INa, and Il were considered as candidate

variables to be used in reconstructing a phase space for the

dynamics. The SVDO coefficients shown in Table I were

computed for I¼�10 using a 5-dimensional embedding

FIG. 2. Schematic representation of an svM-SSA for J¼ 4 idealized coupled

oscillators. (a) The template shows the signature of a single oscillatory

mode, identified by a unique (l¼ 1) kk pair separated from the “noise floor”

by a clear gap. (b) Prior PS, four distinct oscillatory modes are identified

(l¼ 4). (c) The onset of the first PS cluster is identified by one k�k pair

becoming larger as another pair simultaneously merges with the noise floor

(both pairs are indicated in orange). (d) k�k for an increasing coupling

strength C: (i) oscillators start non-synchronized—like in (b); (ii) two oscil-

lators form a PS cluster when a pair of k�k increases and another pair falls to

the noise floor—as the orange pairs in (c); (iii) other two oscillators form a

second PS cluster, and again there is an increase in a k�k pair while the other

merges with the noise floor (and l¼ 2); (iv) finally, the two clusters merge

into a single PS one. The number l of k�k pairs above the noise floor (equiva-

lently, of different oscillatory modes detected) is indicated by the thickness

of the lines.

TABLE I. Observability coefficients for the different models investigated in

this work. (*) for I¼�1.

Hodgkin–Huxley model

ds gs4 Ss

V 1.11 	 10�7 0.12 0.11 6 0.001

n 1.09 	 10�6 0.19 0.09 6 0.002 (IK)

m 5.14 	 10�9 0.19 0.05 6 0.002 (INa)

h 4.90 	 10�6 0.19 0.17 6 0.003 (Il)

FitzHugh–Nagumo model

ds gs2 Ss

x 0.04(*) 1.00 0.30 6 0.02

y 0.09 1.00 0.21 6 0.01

Hindmarsh–Rose model

ds gs3 Ss

x 6.32 	 10�4 0.25 0.67 6 0.16

y 3.31 	 10�4 0.56 0.45 6 0.16

z 2.90 	 10�6 1.00 186.63 6 33.68

Izhikevich’s model

gs2 Ss

u 1.00 0.75 6 0.29

v 1.00 8.38 6 0.51
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space and a common delay time (s¼ 100 sampling intervals)

for the three variables. The reported values are mean plus-

minus one standard deviation over ten Monte Carlo runs

where the initial conditions were taken randomly from

Gaussian distributions: Nð�60; 1Þ for V(0), Nð0:3; 0:012Þ
for n(0), Nð0; 0:012Þ for m(0) and Nð0:55; 0:012Þ for h(0).

The results show that the best measured signals for recon-

structing a phase space using delay coordinates are V and Il.

The simple (afine) relationship between such signals sug-

gests that they are somewhat equivalent in what concerns

observability.

B. The FitzHugh–Nagumo model

The observability matrix for model (2) when x is

recorded is

Ox ¼
1 0

�cðx2 � 1Þ c

� �
; (12)

with determinant det ðOxÞ ¼ c, hence unless c¼ 0 the sys-

tem is observable from the x variable, although observability

could be poor for very small values of c. Notice that for 0 <
c
 1 the model (2) becomes a singular perturbed system.

Recording y yields the observability matrix

Oy ¼
0 1

�1=c �b=c

� �
; (13)

also with constant determinant det ðOyÞ ¼ 1=c. Hence for

very high values of c, the y variable conveys worse observ-

ability of the dynamics.

Ox, that depends on x, varies along the limit cycle

which, in turn is affected by I. Contrary to this Oy is constant

throughout the phase space and is not influenced by the stim-

ulus. Both observability coefficients dx and dy are of the

same order of magnitude for the chosen parameters. Hence,

unless c is very large or very small, both state variables are

comparable in what concerns observability, although mea-

suring y ensures more uniform performance along the limit

cycle. Similar conclusions were attained (Table I) using the

symbolic observability matrix

Osym
x ¼ 1 0

�1 1

� �
(14)

for which Det Osym
x ¼ 1� 1 where � is the multiplicative

law between the symbols as defined in Ref. 6.

The SVDO coefficients for the Fitzhugh–Nagumo

model, shown in Table I, confirm that the observability of

both variables are comparable and that the embedding space

reconstructed with y is rather more homogeneous. These val-

ues were computed for I¼�0.4 using a 3-dimensional

embedding space and a common delay time (s¼ 100 sam-

pling intervals) for the three variables. In the ten Monte

Carlo runs, the initial conditions of both state variables were

taken from Nð0; 1Þ.

C. The Hindmarsh–Rose model

The observability of the Hindmarsh–Rose (HR) model

has been considered recently. In Ref. 35, a modified version

of (3) was considered with linearly transformed coupled

equations,5 and in Ref. 41 symbolic observability coeffi-

cients28 were computed. So here we compute the observabil-

ity coefficients as used in Ref. 29 for model (3). Following

Ref. 41, we use ða; b; c; dÞ ¼ ð1; 3; 1; 5Þ and ðr; s; x1; IÞ
¼ ð0:001; 4;� 1þ

ffiffi
5
p

2
; 3:318Þ. The observability matrices for

model (3) are

Ox ¼
1 0 0

2bx� 3ax2 1 �1

Ox
31 O32 3ax2 � 2bxþ r

2
664

3
775; (15)

where Ox
31 ¼ ð2bx� 3ax2Þ2 � rs� 2dxþ ð2b� 6axÞð�ax3

þ bx2 þ I þ y� zÞ and Ox
32 ¼ �3ax2 þ 2bx� 1. Ox

becomes singular for r¼ 1 because in that case the two last

columns become linearly dependent, in fact, det ðOxÞ ¼ r
�1. Singularity is not expected to happen for the usual val-

ues of r, although a negative value for the determinant may

indicate that the original and reconstructed spaces are topo-

logically equivalent, but not orbitally equivalent, that is the

direction of the flow may be different in each space. As dis-

cussed in Ref. 33, this negative determinant could suggest

that a higher-dimensional space should be used to recover

full observability. The observability matrix from the y vari-

able is:

Oy ¼
0 1 0

�2dx �1 0

Oy
31 1� 2dx 2dx

2
664

3
775; (16)

where Oy
31 ¼ �2dð�x� ax3 þ bx2 þ I þ y� zÞ � 2dxð2bx

�3ax2Þ. Oy becomes singular at x¼ 0, in fact det

ðOyÞ ¼ 4d2x2 ¼ 100x2, for the parameters used. Although

this situation could happen several times during firing, the

associated dynamics are so fast that the time the system

spends close to x¼ 0 is so short that this does not pose practi-

cal observability problems.11 Finally, the observability

matrix when z is recorded is

Oz ¼
0 0 1

rs 0 �r

rsð2bx� 3ax2Þ � r2s rs rðr � sÞ

2
664

3
775; (17)

which becomes singular at rs¼ 0. In this case q½Oz� ¼ 1,

where q stands for the rank. This, added to the fact that r is

already quite small, shows that z conveys poor observability

of the system. It is interesting to notice that although det

ðOzÞ ¼ r2s2 ¼ 1:6 � 10�5 is constant this does not imply

good observability.

In order to quantify observability, coefficients were com-

puted for ða; b; c; dÞ ¼ ð1; 3; 1; 5Þ; ðr; s; x1Þ ¼ ð0:001; 4;
� 1þ

ffiffi
5
p

2
Þ and I¼ 3.318 (Table I). The fast variables provide

better observability than the slow one z.
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The symbolic observability matrix reads

Osym
x ¼

1 0 0

�1 1 1

�1 �1 �1

2
664

3
775 (18)

and gx3 ¼ 0:25. Nevertheless, det Ox ¼ r � 1 and is clearly

not dependent on the location in the state space. It is never

singular unless r 6¼ 1. A global diffeomorphism could be

therefore expected, that is, a full observability should be pro-

vided by this variable although it could be very ill-

conditioned, and therefore poor. This is one of the rare cases

where two nonlinear terms in the computation of the deter-

minant cancel each other; the symbolic computation is there-

fore very different from an analytical computation. Note that

as the dimension of the system increases, this situation

becomes less likely. It has been argued that from the sym-

bolic point of view, the coefficient gx3 should be corrected to

be equal to 1.41 As long as r is significantly different from 1,

taking gx3 ¼ 1 should be a fair estimation of the observabil-

ity. From the two other symbolic observability matrices, we

obtained gy3 ¼ 0:56 and gz3 ¼ 1.

The symbolic observability coefficient gx3 —if not cor-

rected—would suggest a rather poor observability of the

dynamics underlying the Hindmarsh–Rose system from vari-

able x. In fact, and contrary to what is provided from the

determinant point of view, variable x does not provide a

good observability of the underlying dynamics, when param-

eter r has a small value, e.g., r< 0.01. This is confirmed by a

differential embedding induced by variable x of the attractor

produced by the Hindmarsh-Rose system [Fig. 3(a)] which

clearly shows that the chaotic nature of the behavior is

poorly evidenced, contrary to what is observed when the dif-

ferential embedding induced by variable z is used [Fig. 3(c)].

For very small r-values, e.g., r< 0.01, the symbolic observ-

ability coefficient gx3 does not properly reflect the observ-

ability. This is one of the cases where the dynamics is

directly responsible for particular difficulties in distinguish-

ing the different states of the system.

The SVDO coefficients for I¼ 3.318 are shown in Table

I and for I¼ 2 they are Sx ¼ 0:4260:04; Sy ¼ 0:2060:03,

and Sz ¼ 19:4560:61. These values were computed over ten

Monte Carlo runs where the initial conditions of the three

state variables were taken from Nð0; 0:12Þ; using a 4th

dimensional embedding space and a common delay time (s
¼ 100 sampling intervals) for the three variables. Numerical

experimentation with other values did not change the ranking

of the variables.

For both values of I we find that x and y variables have

similar features (as for dx and dy), the difference being that

Sz suggests that z provides better “observability.” This was

also the case of the symbolic observability coefficients. The

chaotic nature of the reconstructed attractors — using delay

or derivative coordinates—is better evidenced by variable z.

The values of the observability coefficient Ss also confirm

these results. This does not necessarily mean that z is a good

observable. In fact, the fast dynamics (spikes) are practically

invisible from z—which corresponds to the flat bottom of the

(a)

(b)

(c)

FIG. 3. Plane projection of the differential embedding induced by each vari-

able of the Hindmarsh–Rose system. Top left: x- _x plane, top right: y- _y plane,

and bottom: z- _z plane.

103103-7 Aguirre, Portes, and Letellier Chaos 27, 103103 (2017)



attractor in Fig. 3(c). It seems that z is the best observable for

slow dyamics (chaos) whereas x and y convey information

on the spikes (chattering).

D. The Izhikevich’s spiking neuron model

The observability for model (4) poses interesting chal-

lenges because of the switching mechanism which is not pro-

duced by the differential equations. Also, the discontinuity

induced by the switching poses theoretical difficulties to the

application and interpretation of Lie derivatives. The compu-

tation of observability coefficients for this system is left for

future research.

Because the symbolic observability coefficients do not

depend on the parameters, the same values gu2 ¼ gv2 ¼ 1

were obtained for both chattering and chaotic regimes. These

results suggest that any of these two variables offer a full

observability of the state variables u and v, but not of the

switching. It must be clear that by construction this is an

approximation since the switching mechanism is not fully

described in terms of the differential equation (at least a third

variable would be necessary for this) and, consequently,

there is no available technique so far to rigorously assess the

observability of such a system.

The SVDO coeficients (de ¼ 3 and s¼ 100 sampling

intervals) for model (4) in the chaotic regime are shown in

Table I. For chattering dynamics, they are Sv ¼ 0:8660:27;
Su ¼ 0:1760:12. In both regimes, the initial conditions were

chosen randomly over ten Monte Carlo simulations from the

Gaussian distributions: Nð�65; 102Þ for v(0) and

Nð�130; 102Þ for u(0). It should be pointed out that the dis-

continuities of the trajectories in the state space produced by

model (4) might have some unknown effect on the computa-

tion of the SVDO coefficients. It is the first time that such

coefficients are computed from discontinuous data.

The results concerning observability are summarized in

Table I. It seems that observing the dynamics underlying

neurons is rather challenging because getting a reconstructed

state portrait with a good observability of the original state

space is not an easy task: this is not only due to the way the

mechanisms are described in terms of equations but also due

to the different time scales often encountered in neuron

dynamics.

V. SYNCHRONIZATION IN NEURON NETWORKS

In this section, we provide numerical evidence that PS

in networks of neuron models can be detected without esti-

mating the phase, by using the svM-SSA with a single vari-

able approach (see Sec. III D).

This is illustrated by two examples with different aims.

The first example aims at illustrating the main aspects of the

svM-SSA in a simple problem. The second example explores

the feasibility of using the svM-SSA in the synchronization

analysis of coupled neurons in a large network. Before dis-

cussing the examples, however, an important aspect must be

addressed.

Let _xj ¼ fjðxj; vjÞ; j ¼ 1;…; J be a network of J cou-

pled neuron models, where xj 2 Rn is the state vector of the

jth model and vj is a vector of coupling variables from other

neurons. Also, let h : Rn ! R be a measuring function such

that hðxjÞ ¼ sjðtÞ. From the set of time series

sjðtÞ; j ¼ 1;…; J, it is desired to detect phase synchroniza-

tion using svM-SSA.

In this framework there are two types of variables, and it

is vital to see the difference between them. On the one hand,

the variables in v are used to couple the neuron models.

Many ways of achieving this have been reviewed in Ref. 12.

It has been recently pointed out that neither controllability

nor observability are generally useful in choosing the varia-

bles for coupling.4 On the other hand, there is the variable

sjðtÞ that is used for analysis, i.e., the variable used to detect

phase synchronization using svM-SSA. It has been argued

that in choosing sjðtÞ the use of observability is most impor-

tant.35 Hence, the results are relevant in practice due to the

fact that the variable experimentally measured provides good

observability of the system dynamics (Sec. III D).

A. The FitzHugh–Nagumo model

Consider a chain of J¼ 5 diffusively coupled FitzHugh–

Nagumo neuron models

_xj ¼ c yþ x� x3

3
þ z


 �
þ Cðxjþ1 � 2xj þ xj�1Þ

_yj ¼ �ðx� aþ byÞ=c

8><
>: (19)

with j ¼ 1;…; J with free boundary conditions x0¼ x1 and

xJþ1 ¼ xJ , where C is the coupling strength. Along this sec-

tion, data was generated by integrating (19) with integration

step h¼ 0.01 time units (t.u.) for a total time tsim ¼ 450 t.u.,

using a 4th-order Runge–Kutta algorithm. The first ttrans ¼ 50

t.u. were discarded, and the time series of x and y were sam-

pled with ts ¼ 0:7 t.u. Also ða; bÞ ¼ ð0:7; 0:8Þ and detuning

cj ¼ c1 þ ðj� 1ÞDc, with c1 ¼ 3; Dc ¼ 0:2 and I¼�4. An

interesting study on the observability and controllability of

three-node networks with Fitzhugh–Nagumo models at each

node has been discussed in Ref. 44.

Before starting the synchronization analysis, one needs

to know the specific template of the oscillatory dynamics of

one oscillator. Figure 4 shows the power spectrum of the x
time series and the 20 leading svM-SSA singular values for a

single neuron model. The svM-SSA window width was

m¼ 31 (�2T=ts), covering almost two oscillatory periods.

The template in Fig. 4(b) shows that a single oscillator will

be identified as two leading pairs of singular values (k1;2 and

FIG. 4. (a) Power spectrum density with the fundamental frequency

at� 0.09 Hz and (b) svM-SSA template analysis of a FitzHugh–Nagumo

neuron. Two oscillatory modes are predominant, a stronger (k1,2) and a

weaker one (k3,4).
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k3;4), which are associated with two dominant modes seen in

Fig. 4(a).

We illustrate the use of the svM-SSA by investigating

the synchronization dynamics of the chain for an increasing

coupling strength C 2 ½0; 0:06�. A crosscheck of the PS

results was done by: (a) computing the mean frequencies, Xj,

as the slope of a linear least squares fit of the instantaneous

phase /jðtÞ, which, in turn, was estimated through the ana-

lytic signal based on the Hilbert transform. Evidence for PS

was verified through two criteria: (i) the mean frequency

locking Xj ¼ Xi (weak PS condition); (ii) the phase entrain-

ment D/i;jðtÞ ¼ j/iðtÞ � /jðtÞj < const (strong PS condi-

tion). For the sake of completeness, also a visual inspection

of the spatiotemporal patterns in xjðtÞ is provided, as it is

usual in neuroscience.

Figure 5 shows the results. The following features are

worth noticing. First, at low values of the coupling strength

(e.g., at C¼C1, first dashed vertical line) the five oscillators

have different frequencies Xj, suggesting no PS. Before

C¼C2, the onset of PS is detected by the increasing value of

a k� pair with a simultaneous drop of other pair to the noise

floor [Fig. 5(b)]. Only later, at C¼C2 PS is suggested by the

condition X2 ¼ X3. At C¼C3 there are two PS clusters indi-

cated by k�1;2 and k�3;4 and confirmed by two different average

frequencies. The pair k�1;2 is related to the main oscillatory

mode of one cluster whereas k�3;4 is related to the other one.

At C¼C4, it is possible to devise a “jump” in the mean fre-

quency associated with poor or inappropriate frequency esti-

mation (e.g., due to phase slips). Such jumps were obtained

regardless of how the phase was estimated (i.e.,, arctanðy=xÞ
or through a Poincar�e section, not shown). Since the svM-

SSA does not require the computation of phases, no “jumps”

are present. This robustness represents another advantage of

the method.

The phase entrainment condition D/2;jðtÞ < const [Fig.

5(c)], with oscillator j¼ 2 taken as the reference, corrobo-

rates the results obtained with the svM-SSA. Oscillators

j¼ 1, 2 are phase locked D/2;1ðtÞ � 0 at C < C2 (red star)

for almost one third of the total observed time (thick black

strip just below the curve D/2;2ðtÞ ¼ 0). Also, D/2;3ðtÞ
seems to be bounded as well, showing that PS onset is, in

fact, due the cluster formed by oscillators j¼ 1, 2 and 3 indi-

cated by the increase of k�1;2. At C¼C4 oscillator j¼ 5 suf-

fers phase slips, which is associated with the aforementioned

jump in the mean frequency plot.

Finally, parallel lines in the spatiotemporal patterns

shown in Fig. 5(d) indicate PS. So, clearly, the scenario for

C¼C4 is visually more synchronized than, say, for C¼C2.

Also, a line broken into two parts (see C¼C3) is evidence

for two PS clusters. Although such information could be

extracted from the spatiotemporal patterns, the use of these

plots is more subjective than the svM-SSA.

B. The Izhikevich’s spiking neuron model

In the previous example, the svM-SSA was used in the

context of a few oscillators. But computational investigations

on neuronal dynamics also include networks with a massive

number of neurons such as J 103 up to 106 and above. For

example, a network model of the mammalian thalamocorti-

cal system exhibited polychronous activity only with J> 104

neurons.22

Hence, in this section a numerical experiment using a net-

work with J¼ 1000 excitatory Izhikevich neuron models is

reported. Such a model has both biological plausibility and

computational efficiency, and is able to emulate nearly 20

neuro-computational properties of biological spiking neurons.21

In model (4), each neuron receives a total current I,
which is computed as

Ij ¼ Ij
in þ gIj

syn; where Ij
syn ¼

XJ

i¼1

Sðj; iÞ;

and the synaptic weight matrix S 2 RJ	J quantifies how neu-

rons i ¼ 1;…; J; i 6¼ j interact with neuron j. S has J¼Ne

þNi columns that correspond to the number of excitatory

and inhibitory neurons. Here a population of excitatory neu-

rons is considered, and then Ne ¼ 1000 and Ni ¼ 0. The

entries of S were selected from the uniform distribution

U½0; 0:5�. In this example, following Refs. 21 and 24

ðaj; bj; cj; djÞ ¼ ð0:02; 0:2;�65; 8Þ þ ð0; 0; 15;�6Þr2
j , where

rj  U½0; 1�. The Euler integration method was used with

ðh; ts; tsim; ttransÞ ¼ ð0:5; 1; 1000; 0Þ ms. Fifty equally space

FIG. 5. Results for J¼ 5 detuned FitzHugh–Nagumo neurons. (a) Mean

observed frequencies: X1 (top) to X5 (bottom), (b) eigenvalues obtained by

svM-SSA show the PS clustering (see text) (c) instantaneous phase differ-

ence jD/2;jj=2p, and (d) xjðtÞ spatiotemporal patterns.
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values of g 2 ½0:4; 0:5� were taken. The same randomly gen-

erated synaptic weight matrix was used in all simulations.

The relevant dynamical information is coded in the

occurrences of spikes and not in their magnitude. In view of

this, a so-called spike raster time series xj(t) is produced

from vj(t). Such a series is formed of 0 and 1 s. Whenever a

neuron fires (vjðtÞ � 30) xj(t)¼ 1, which is otherwise 0.

Figure 6(a) shows the raster spike plots for g¼ {0.4, 0.5},

which show low and high synchrony levels, respectively.

Due to the large number of neurons in this simulation,

what is of interest is the collective dynamics that results from

the global correlation presented by the 1000 neurons when

they fire. If firing is totally uncorrelated, no global pattern is

recognizable. This is the case at the end of the top panel

shown in Fig. 6(a). When there is correlation of individual fir-

ing patterns, then collective evidence is recognizable as stripes

in the raster plots as in the bottom panel in Fig. 6(a). The

greater the correlation, the more well defined such stripes

appear. The individual firing pattern can be represented by the

sequence [0, 1, 0], which has a duration of 3 ms in the x time

series. The window length should be such as to enable the lag-

covariance matrix C (see Sec. III D) to capture correlations at

such time scales. In this example m¼ 10 ms was chosen, but

values as small as m¼ 4 ms yielded similar results.

There is also a slow time scale (� 200 ms) which is

related to how the stripes in the raster plots—due to the col-

lective dynamics—propagate through time, e.g., rapidly

decaying as in the top panel in Fig. 6(a), or slowly decaying

as in the bottom panel. The analysis of such a time scale

using svM-SSA would require m � 400 and would result in

a C 2 RJm	Jm with a Jm ¼ 4	 105 lag-covariance matrix.

Such analysis is not viable at this stage.

The ten leading eigenvalues k�k and respective five eigen-

vectors e�k are shown in Figs. 6(b) and 6(c). The structured

varimax rotation was performed with 20 eigenvectors to pre-

vent over-rotation (but values as large as 2000 provided

similar results). Note that a vector e�k is formed by J segments

of length m, each one associated with an oscillator j14,35 (only

the first 30 segments are shown in the plots). They provide a

collection of features that forms the “skeleton” of the dynami-

cal behavior structure.7,15 In the left panel of Fig. 6(c), no sim-

ilar pattern of behavior was detected in the time series xj for

the low synchrony level. Hence, all the eigenvectors explain

similar amounts of variance in the data, and the respective

eigenvalues have similar small values [blue disks in Fig.

6(b)]. Contrary to this, in the right panel of Fig. 6(c) similar

“bell” shaped patterns are seen in each J segment of e�1, which

represents almost five times the variance of the data

(k�1 � 0:25) as compared with e�2 (k�2 � 0:05), resulting in a

large gap seen in the k�k spectrum [see orange triangles in Fig.

6(b)]. A sharp global pattern is also seen in e�2, but no clear
visible gap in the k�k spectrum is seen for k � 2.

Given the results above, one way of focusing on the col-

lective dynamics rather than on a detailed view of PS cluster

formation, is to monitor the leading k�1, that corresponds to

the stronger, global, dynamical feature present in the data.

This is shown in Fig. 7(a) for increasing values of the cou-

pling gain g. As a crosscheck, the svM-SSA results were

compared with two order parameters that have been pro-

posed to quantify the level of synchronism: (i) the mean

square deviation24 K ¼ hVðtÞ � hVðtÞi2i, where h�i stands

for time average and VðtÞ ¼
PN

j¼1 xjðtÞ is the local field

potential (LFP); and (ii) the spike distance metric D.25,26 As

seen in Fig. 7(a), the overall behavior of k�1ðgÞ; KðgÞ and 1�
D is similar. Therefore, in the context of a large network and

with just the raster time series of spike events, the svM-SSA

is able to provide the general picture of PS.

VI. CONCLUSIONS

In most studies involving neuron models, it is common

to use the first state variable—the membrane potential—for

FIG. 6. Signatures of the svM-SSA for

the N¼ 1000 pulse-coupled Izhikevich

neuron models. (a) Raster plots show

two levels of synchronism, correspond-

ing to low PS (g¼ 0.4, top panel) and

high PS (g¼ 0.5, bottom panel). (b)

Associated k�k spectra and (c) the five

leading (respective) eigenvectors.
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monitoring or controlling purposes. This choice of variable

results from the fact that, in experimental neuron networks,

only this variable can be actually measured. However, it is

important, not only from a theoretical point of view, to know

if such a choice is the most adequate in terms of the dynami-

cal behavior. In practice, the analysis of a variable that con-

veys poor dynamical information could imply unreliable and

wrong results.3,35,37

One of the objectives of this paper has been to investi-

gate the observability properties of neuron models. This has

been done using three different quantifiers for observability:

coefficients determined numerically from the model equa-

tions,29 from data3 or symbolic coefficients analytically

obtained from the model equations.28 This procedure turned

out to reveal the limitations of some techniques, for instance,

due to the complexity of the equations and the physical inter-

pretation of the variables, investigating the observability of

the Hodgkin–Huxley model is viable only using the data-

estimated coefficients or the symbolic observability coeffi-

cients. Also, the performance of such a method using discon-

tinuous data as for the Izhikevich’s spiking neuron model is

uncertain. This mostly results from the fact that in this latter

model, the switching mechanism is not fully described by

the equations and there is at least one missing variable in the

model for having a complete description of the underlying

mechanisms. Hence observability was investigated from a

truncated model and it remains an open question how to pro-

ceed with such discontinuous systems.

In summary the variables that convey greater observ-

ability were: the membrane potential in the Hodgkin–Huxley

and Izhikevich’s models (especially during chattering),

whereas for FitzHugh–Nagumo the observability provided

by the potential and recovery variables is comparable. The

Hindmarsh–Rose model has some peculiarities in what

concerns observability. The membrane potential and fast

recovery variable reveal the fast time scales such as the

spikes in the chattering regime, whereas the z variable (slow

recovery) is the only one to clearly reveal the chaotic nature

of the dynamics when it occurs.

Some of the aforementioned models were investigated

in the context of synchronization. In particular, networks

formed of five phase coherent FitzHugh–Nagumo neurons,

five bursting Hindmarsh–Rose neurons (not shown), and one

with 1000 Izhikevich neurons were analyzed. A technique

known as structured-varimax multivariate singular spectrum

analysis (sv-MSSA), from a variable that provides good

observability of the dynamics, was used to successfully

detect phase synchronization in the networks. The results

attained with the sv-MSSA were crosschecked with more

conventional procedures such as the estimation of mean fre-

quencies and instantaneous phases, the use of spatiotemporal

patterns, for the example with FitzHugh–Nagumo models;

and local field potential, its mean square deviation, the spike

distance metric and signal raster plots, for the example with

1000 Izhikevich neurons. Two interesting features of this

technique is that it does not require computing the phase and

it is able to detect synchronization in situations where other

methods like the computation of mean frequencies or visual

inspection of spatioteporal patterns give an unclear indica-

tion. It is therefore believed that the field of neuroscience

would profit from such a tool.
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