Z. Abu-aisheh, B. Gaüzere, S. Bougleux, J. Ramel, L. Brun et al., Graph edit distance contest: Results and future challenges, Pattern Recognition Letters, vol.100, pp.96-103, 2017.
DOI : 10.1016/j.patrec.2017.10.007

URL : https://hal.archives-ouvertes.fr/hal-01624592

Z. Abu-aisheh, R. Raveaux, and J. Ramel, A Graph Database Repository and Performance Evaluation Metrics for Graph Edit Distance, 2015.
DOI : 10.1007/978-3-319-18224-7_14

URL : https://hal.archives-ouvertes.fr/hal-01168809

D. B. Blumenthal and J. Gamper, Exact computation of graph edit distance for uniform and nonuniform metric edit costs, Graph-Based Representations in Pattern Recognition, pp.211-221, 2017.

S. Bougleux, L. Brun, V. Carletti, P. Foggia, B. Gaüzère et al., Graph edit distance as a quadratic assignment problem, Pattern Recognition Letters, vol.87, pp.38-46, 2017.
DOI : 10.1016/j.patrec.2016.10.001

URL : https://hal.archives-ouvertes.fr/hal-01613964

H. Bunke and G. Allermann, Inexact graph matching for structural pattern recognition, Pattern Recognition Letters, vol.1, issue.4, pp.245-253, 1983.
DOI : 10.1016/0167-8655(83)90033-8

V. Cappellini, H. Sommers, W. Bruzda, ?. Zyczkowski, and K. , Random bistochastic matrices, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.36, p.42365209, 2009.
DOI : 10.1088/1751-8113/42/36/365209

URL : http://arxiv.org/pdf/0711.3345

V. Carletti, B. Gaüzère, L. Brun, and M. Vento, Approximate Graph Edit Distance Computation Combining Bipartite Matching and Exact Neighborhood Substructure Distance, Graph-Based Representations in Pattern Recognition, pp.168-177, 2015.
DOI : 10.1007/978-3-319-18224-7_19

URL : https://hal.archives-ouvertes.fr/hal-01389626

X. Cortés, F. Serratosa, and C. F. Moreno-garcía, On the Influence of Node Centralities on Graph Edit Distance for Graph Classification, Int. Workshop on Graph-Based Representations in Pattern Recognition, pp.231-241, 2015.
DOI : 10.1007/978-3-319-18224-7_23

A. Fischer, K. Riesen, and H. Bunke, Improved quadratic time approximation of graph edit distance by combining Hausdorff matching and greedy assignment, Pattern Recognition Letters, vol.87, pp.55-62, 2017.
DOI : 10.1016/j.patrec.2016.06.014

M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.95-110, 1956.
DOI : 10.2140/pjm.1955.5.183

B. Gaüzère, S. Bougleux, and L. Brun, Approximating graph edit distance using GNCCP, Structural , Syntactic, and Statistical Pattern Recognition, pp.496-506, 2016.

B. Gaüzère, S. Bougleux, K. Riesen, and L. Brun, Approximate graph edit distance guided by bipartite matching of bags of walks, Structural, Syntactic, and Statistical Pattern Recognition, pp.73-82, 2014.

P. A. Knight, The Sinkhorn???Knopp Algorithm: Convergence and Applications, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.1, pp.261-275, 2008.
DOI : 10.1137/060659624

URL : http://drops.dagstuhl.de/opus/volltexte/2007/1064/pdf/07071.KnightPhilip.Paper.1064.pdf

E. Lawler, The Quadratic Assignment Problem, Management Science, vol.9, issue.4, pp.586-599, 1963.
DOI : 10.1287/mnsc.9.4.586

M. Leordeanu, M. Hebert, and R. Sukthankar, An integer projected fixed point method for graph matching and map inference, Advances in Neural Information Processing Systems, pp.1114-1122, 2009.

J. Lerouge, Z. Abu-aisheh, R. Raveaux, P. Héroux, A. et al., New binary linear programming formulation to compute the graph edit distance, Pattern Recognition, vol.72, pp.254-265, 2017.
DOI : 10.1016/j.patcog.2017.07.029

URL : https://hal.archives-ouvertes.fr/hal-01619313

Z. Liu and H. Qiao, GNCCP—Graduated NonConvexityand Concavity Procedure, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.6, pp.1258-1267, 2014.
DOI : 10.1109/TPAMI.2013.223

M. Neuhaus and H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines, volume 68 of Machine Perception and Artificial Intelligence, 2007.

K. Riesen, Structural Pattern Recognition with Graph Edit Distance Advances in Computer Vision and Pattern Recognition, 2015.
DOI : 10.1007/978-3-319-27252-8

K. Riesen and H. Bunke, IAM graph database repository for graph based pattern recognition and machine learning. accepted for publication in SSPR, 2008.
DOI : 10.1007/978-3-540-89689-0_33

K. Riesen and H. Bunke, Approximate graph edit distance computation by means of bipartite graph matching, Image and Vision Computing, vol.27, issue.7, pp.950-959, 2009.
DOI : 10.1016/j.imavis.2008.04.004

K. Riesen and H. Bunke, Improving bipartite graph edit distance approximation using various search strategies, Pattern Recognition, vol.48, issue.4, pp.1349-1363, 2015.
DOI : 10.1016/j.patcog.2014.11.002

K. Riesen, H. Bunke, and A. Fischer, Improving Graph Edit Distance Approximation by Centrality Measures, 2014 22nd International Conference on Pattern Recognition, pp.3910-3914, 2014.
DOI : 10.1109/ICPR.2014.670

K. Riesen, M. Ferrer, A. Fischer, and H. Bunke, Approximation of Graph Edit Distance in Quadratic Time, Int. Workshop on Graph-Based Representations in Pattern Recognition, pp.3-12, 2015.
DOI : 10.1007/978-3-319-18224-7_1

K. Riesen, A. Fischer, and H. Bunke, Improved Graph Edit Distance Approximation with Simulated Annealing, Graph-Based Representations in Pattern Recognition, pp.222-231, 2017.
DOI : 10.1007/978-3-540-89689-0_33

A. Sanfeliu and K. Fu, A distance measure between attributed relational graphs for pattern recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.13, issue.3, pp.353-362, 1983.
DOI : 10.1109/TSMC.1983.6313167

F. Serratosa, Fast computation of Bipartite graph matching, Pattern Recognition Letters, vol.45, pp.244-250, 2014.
DOI : 10.1016/j.patrec.2014.04.015

F. Serratosa, Computation of graph edit distance: Reasoning about optimality and speed-up, Image and Vision Computing, vol.40, pp.38-48, 2015.
DOI : 10.1016/j.imavis.2015.06.005

R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific Journal of Mathematics, vol.21, issue.2, pp.343-348, 1967.
DOI : 10.2140/pjm.1967.21.343

URL : http://msp.org/pjm/1967/21-2/pjm-v21-n2-p14-s.pdf

T. Uno, Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs, Algorithms and Computation, pp.92-101, 1997.
DOI : 10.1007/3-540-63890-3_11

J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer et al., Fast Approximate Quadratic Programming for Graph Matching, PLOS ONE, vol.42, issue.Suppl, pp.1-17, 2015.
DOI : 10.1371/journal.pone.0121002.t002

URL : https://doi.org/10.1371/journal.pone.0121002

M. Zaslavskiy, F. Bach, and J. Vert, A Path Following Algorithm for the Graph Matching Problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.12, pp.312227-2242, 2009.
DOI : 10.1109/TPAMI.2008.245

URL : https://hal.archives-ouvertes.fr/hal-00232851

Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, Comparing stars, Proceedings of the VLDB Endowment, pp.25-36, 2009.
DOI : 10.14778/1687627.1687631