Knowledge-Based Policies for Qualitative Decentralized POMDPs

Abstract : Qualitative Decentralized Partially Observable Markov Decision Problems (QDec-POMDPs) constitute a very general class of decision problems. They involve multiple agents, decentralized execution, sequential decision, partial observabil-ity, and uncertainty. Typically, joint policies, which prescribe to each agent an action to take depending on its full history of (local) actions and observations, are huge, which makes it difficult to store them onboard, at execution time, and also hampers the computation of joint plans. We propose and investigate a new representation for joint policies in QDec-POMDPs, which we call Multi-Agent Knowledge-Based Programs (MAKBPs), and which uses epistemic logic for compactly representing conditions on histories. Contrary to standard representations, executing an MAKBP requires reasoning at execution time, but we show that MAKBPs can be exponentially more succinct than any reactive representation.
Type de document :
Communication dans un congrès
32nd AAAI Conference on Artificial Intelligence, Feb 2018, New Orleans, United States
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01646207
Contributeur : Bruno Zanuttini <>
Soumis le : mercredi 6 décembre 2017 - 00:22:20
Dernière modification le : mardi 5 juin 2018 - 10:14:13

Fichier

delqdecpomdps-pour-HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01646207, version 1

Citation

Abdallah Saffidine, François Schwarzentruber, Bruno Zanuttini. Knowledge-Based Policies for Qualitative Decentralized POMDPs. 32nd AAAI Conference on Artificial Intelligence, Feb 2018, New Orleans, United States. 〈hal-01646207〉

Partager

Métriques

Consultations de la notice

399

Téléchargements de fichiers

151