Spectral spaces of countable abelian lattice-ordered groups

Abstract : A compact topological space X is spectral if it is sober (i.e., every irreducible closed set is the closure of a unique singleton) and the compact open subsets of X form a basis of the topology of X, closed under finite intersections. Theorem. A topological space X is homeomorphic to the spectrum of some countable Abelian ℓ-group with unit (resp., MV-algebra) iff X is spectral, has a countable basis of open sets, and for any points x and y in the closure of a singleton {z}, either x is in the closure of {y} or y is in the closure of {x}. We establish this result by proving that a countable distributive lattice D with zero is isomorphic to the lattice of all principal ideals of an Abelian ℓ-group (we say that D is ℓ-representable) iff for all a, b ∈ D there are x, y ∈ D such that a ∨ b = a ∨ y = b ∨ x and x ∧ y = 0. On the other hand, we construct a non-ℓ-representable bounded distributive lattice, of cardinality ℵ 1 , with an ℓ-representable countable L∞,ω-elementary sublattice. In particular, there is no characterization, of the class of all ℓ-representable distributive lattices, in arbitrary cardinality, by any class of L∞,ω sentences.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

Contributeur : Friedrich Wehrung <>
Soumis le : mercredi 29 novembre 2017 - 20:04:49
Dernière modification le : jeudi 7 février 2019 - 17:41:51


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01431444, version 3
  • ARXIV : 1701.03494



Friedrich Wehrung. Spectral spaces of countable abelian lattice-ordered groups. Transactions of the American Mathematical Society, American Mathematical Society, In press, 371 (3), pp.2133--2158. ⟨hal-01431444v3⟩



Consultations de la notice


Téléchargements de fichiers