Varieties of Boolean inverse semigroups

Abstract : In an earlier work, the author observed that Boolean inverse semigroups, with semigroup homomorphisms preserving finite orthogonal joins, form a congruence-permutable variety of algebras, called biases. We give a full description of varieties of biases in terms of varieties of groups: (1) Every free bias is residually finite. In particular, the word problem for free biases is decidable. (2) Every proper variety of biases contains a largest finite symmetric inverse semigroup, and it is generated by its members that are monoids of generalized rook matrices over groups with zero. (3) There is an order-preserving, one-to-one correspondence between proper varieties of biases and certain finite sequences of varieties of groups, descending in a strong sense defined in terms of wreath products by finite symmetric groups.
Type de document :
Article dans une revue
Journal of Algebra, Elsevier, 2018, 511, pp.114--147. 〈10.1016/j.jalgebra.2018.06.018〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01386827
Contributeur : Friedrich Wehrung <>
Soumis le : lundi 24 octobre 2016 - 16:40:05
Dernière modification le : mardi 10 juillet 2018 - 10:03:08

Fichiers

VarBIS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Friedrich Wehrung. Varieties of Boolean inverse semigroups. Journal of Algebra, Elsevier, 2018, 511, pp.114--147. 〈10.1016/j.jalgebra.2018.06.018〉. 〈hal-01386827〉

Partager

Métriques

Consultations de la notice

281

Téléchargements de fichiers

62