An unexpected application of minimization theory to module decompositions
Gérard Duchamp, Hatem Hadj Kacem, Éric Laugerotte

To cite this version:
Gérard Duchamp, Hatem Hadj Kacem, Éric Laugerotte. An unexpected application of minimization theory to module decompositions. 15-02-2004. 2004. <hal-00001573>

HAL Id: hal-00001573
https://hal.archives-ouvertes.fr/hal-00001573
Submitted on 17 May 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An unexpected application of minimization theory to module decompositions

Gérard Duchamp, Hatem Hadj Kacem, Éric Laugerotte
{gerard.duchamp, hatem.hadj-kacem, eric.laugerotte}@univ-rouen.fr
LIFAR, Faculté des Sciences et des Techniques,
76821 Mont-Saint-Aignan Cedex, France.

The first step in the minimization process of an automaton \((\lambda, \mu, \gamma)\) taking it’s multiplicities in a (commutative or not) field, due to Schützenberger, is the construction of a prefix set \(P\) such that the orbit \(\lambda\mu(P)\) of the initial vector be a basis of \(\lambda\mu(k\langle\Sigma\rangle)\) (this amounts to construct a covering tree)\([1, 3]\). Surprisingly, this permits to study \(\text{Hom}_A(M)\) where \(A\) is a finitely generated algebra and \(M\) has a single generator\([2]\). In particular one can obtain a certificate \(\text{cert}(M)\) checking whether the module is or not indecomposable. Exploiting the degrees of freedom in the intermediate computations, one can study in complete detail the moduli of decompositions of \(M\). Applications can be designed in every characteristic \((c)\). Here are given two of them:

- decomposition of boolean functions \((c = 2)\). This provides a criterion of complexity usable in cryptography.
- decomposition of combinatorial modules \((c = 0)\).

This new method is intended to take place in MuPAD-Combinat.

Example:
We consider the boolean function \(f : \{0, 1\}^3 \rightarrow \{0, 1\}\) defined by \(f(x_1, x_2, x_3) = x_1x_2 + x_1 + x_3\), the action being given by the algebra of the symmetric group permuting the variables \((A = \mathbb{Z}/2\mathbb{Z}[S_3])\). We apply our algorithm on this function and obtain figure 1 which represent a complete maximal decomposition of the module. When we apply the algorithm, we deduce that the module \(M\) can be decomposed into \(M_1 \oplus M_2\) with \(M_1 = \mathbb{Z}/2\mathbb{Z}[S_3](x_1x_2 + x_1x_3 + x_2x_3)\) and \(M_2 = \mathbb{Z}/2\mathbb{Z}[S_3](x_1 + x_3 + x_1x_2 + x_2x_3)\) (see figure 2).

References

Figure 1: Action of σ_i on $g = Z/2Z[S_3](x_1 + x_2 + x_3 + x_1x_3 + x_2x_3 + x_1x_2x_3)$

Figure 2: Complete maximal decomposition of $M = g \cdot \mathcal{F}$